Universal distributions of overlaps from generic dynamics in quantum many-body systems (2404.10057v2)
Abstract: We study the distribution of overlaps with the computational basis of a quantum state generated under generic quantum many-body chaotic dynamics, without conserved quantities, for a finite time $t$. We argue that, scaling time logarithmically with the system size $t \propto \log L$, the overlap distribution converges to a universal form in the thermodynamic limit, forming a one-parameter family that generalizes the celebrated Porter-Thomas distribution. The form of the overlap distribution only depends on the spatial dimensionality and, remarkably, on the boundary conditions. This picture is justified in general by a mapping to Ginibre ensemble of random matrices and corroborated by the exact solution of a random quantum circuit. Our results derive from an analysis of arbitrary overlap moments, enabling the reconstruction of the distribution. Our predictions also apply to Floquet circuits, i.e., in the presence of mild quenched disorder. Finally, numerical simulations of two distinct random circuits show excellent agreement, thereby demonstrating universality.
- P. Calabrese, F. H. L. Essler, and G. Mussardo, Introduction to ‘quantum integrability in out of equilibrium systems’, Journal of Statistical Mechanics: Theory and Experiment 2016, 064001 (2016).
- T. Rakovszky, F. Pollmann, and C. W. von Keyserlingk, Diffusive hydrodynamics of out-of-time-ordered correlators with charge conservation, Phys. Rev. X 8, 031058 (2018).
- A. Chan, A. De Luca, and J. T. Chalker, Solution of a minimal model for many-body quantum chaos, Phys. Rev. X 8, 041019 (2018a).
- P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, Journal of High Energy Physics 2007, 120 (2007).
- D. DiVincenzo, D. Leung, and B. Terhal, Quantum data hiding, IEEE Transactions on Information Theory 48, 580–598 (2002).
- A. Ambainis and J. Emerson, Quantum t-designs: t-wise independence in the quantum world (2007), arXiv:quant-ph/0701126 [quant-ph] .
- D. Gross, K. Audenaert, and J. Eisert, Evenly distributed unitaries: On the structure of unitary designs, Journal of Mathematical Physics 48, 10.1063/1.2716992 (2007).
- D. A. Roberts and B. Yoshida, Chaos and complexity by design, Journal of High Energy Physics 2017, 10.1007/jhep04(2017)121 (2017).
- A. W. Harrow and R. A. Low, Random quantum circuits are approximate 2-designs, Communications in Mathematical Physics 291, 257 (2009).
- F. G. S. L. Brandão, A. W. Harrow, and M. Horodecki, Local random quantum circuits are approximate polynomial-designs, Communications in Mathematical Physics 346, 397–434 (2016).
- A. Chan and A. D. Luca, Projected state ensemble of a generic model of many-body quantum chaos (2024), arXiv:2402.16939 [quant-ph] .
- W. W. Ho and S. Choi, Exact emergent quantum state designs from quantum chaotic dynamics, Phys. Rev. Lett. 128, 060601 (2022).
- M. Ippoliti and W. W. Ho, Dynamical Purification and the Emergence of Quantum State Designs from the Projected Ensemble, PRX Quantum 4, 030322 (2023), arXiv:2204.13657 [quant-ph] .
- L. Susskind, Computational complexity and black hole horizons (2014), arXiv:1402.5674 [hep-th] .
- A. R. Brown and L. Susskind, Second law of quantum complexity, Physical Review D 97, 10.1103/physrevd.97.086015 (2018).
- Y. Sekino and L. Susskind, Fast scramblers, Journal of High Energy Physics 2008, 065–065 (2008).
- S. H. Shenker and D. Stanford, Black holes and the butterfly effect, Journal of High Energy Physics 2014, 10.1007/jhep03(2014)067 (2014).
- J. Maldacena, S. H. Shenker, and D. Stanford, A bound on chaos, Journal of High Energy Physics 2016, 10.1007/jhep08(2016)106 (2016).
- A. Nahum, S. Vijay, and J. Haah, Operator spreading in random unitary circuits, Phys. Rev. X 8, 021014 (2018a).
- V. Khemani, A. Vishwanath, and D. A. Huse, Operator spreading and the emergence of dissipation in unitary dynamics with conservation laws, ArXiv e-prints (2017), arXiv:1710.09835 [cond-mat.stat-mech] .
- A. Nahum, J. Ruhman, and D. A. Huse, Dynamics of entanglement and transport in one-dimensional systems with quenched randomness, Phys. Rev. B 98, 035118 (2018b).
- T. Zhou and A. Nahum, Emergent statistical mechanics of entanglement in random unitary circuits, Phys. Rev. B 99, 174205 (2019).
- A. Chan, A. De Luca, and J. T. Chalker, Spectral statistics in spatially extended chaotic quantum many-body systems, Phys. Rev. Lett. 121, 060601 (2018b).
- P. Kos, M. Ljubotina, and T. Prosen, Many-body quantum chaos: Analytic connection to random matrix theory, Physical Review X 8, 10.1103/physrevx.8.021062 (2018).
- B. Bertini, P. Kos, and T. Prosen, Exact Spectral Form Factor in a Minimal Model of Many-Body Quantum Chaos, Phys. Rev. Lett. 121, 264101 (2018), arXiv: 1805.00931.
- S. Mullane, Sampling random quantum circuits: a pedestrian’s guide (2020), arXiv:2007.07872 [quant-ph] .
- N. Hunter-Jones, Unitary designs from statistical mechanics in random quantum circuits (2019).
- T. Zhou and A. Nahum, Entanglement membrane in chaotic many-body systems, Phys. Rev. X 10, 031066 (2020).
- M. L. Mehta, Random Matrices (Academic Press, 2004).
- See supplemental material for additional details.
- G. Akemann, Z. Burda, and M. Kieburg, Universality of local spectral statistics of products of random matrices, Phys. Rev. E 102, 052134 (2020).
- C. Jonay, D. A. Huse, and A. Nahum, Coarse-grained dynamics of operator and state entanglement (2018), arXiv:1803.00089 [cond-mat.stat-mech] .
- A. Chan, A. De Luca, and J. T. Chalker, Spectral lyapunov exponents in chaotic and localized many-body quantum systems, Phys. Rev. Research 3, 023118 (2021).
- D. Weingarten, Asymptotic behavior of group integrals in the limit of infinite rank, Journal of Mathematical Physics 19, 999 (1978), https://doi.org/10.1063/1.523807 .
- S. R. E. Ingram, Some characters of the symmetric group, Proceedings of the American Mathematical Society 1, 358 (1950).
- T. Claeys and D. Wang, Random matrices with equispaced external source, Communications in Mathematical Physics 328, 1023 (2014).
- E. Brézin and S. Hikami, Level spacing of random matrices in an external source, Phys. Rev. E 58, 7176 (1998).
- R. Nandkishore and D. A. Huse, Many-body localization and thermalization in quantum statistical mechanics, Annual Review of Condensed Matter Physics 6, 15 (2015), https://doi.org/10.1146/annurev-conmatphys-031214-014726 .
- F. Alet and N. Laflorencie, Many-body localization: An introduction and selected topics, Comptes Rendus Physique 19, 498 (2018), quantum simulation / Simulation quantique.
- D. A. Abanin and Z. Papić, Recent progress in many-body localization, Annalen der Physik 529, 1700169 (2017), 1700169.
- D. J. Luitz and Y. B. Lev, The ergodic side of the many‐body localization transition, Annalen der Physik 529, 1600350 (2017).
- A. Nahum, J. Ruhman, and D. A. Huse, Dynamics of entanglement and transport in 1d systems with quenched randomness (2017c), arXiv:1705.10364 [cond-mat.dis-nn] .
- N. Macé, F. Alet, and N. Laflorencie, Multifractal scalings across the many-body localization transition, Phys. Rev. Lett. 123, 180601 (2019).
- X. Turkeshi, M. Schirò, and P. Sierant, Measuring nonstabilizerness via multifractal flatness, Physical Review A 108, 10.1103/physreva.108.042408 (2023).
- X. Turkeshi and P. Sierant, (2024), arXiv:to appear [cond-mat.stat-mech] .
- R. M. Gray, Toeplitz and circulant matrices: A review, Foundations and Trends® in Communications and Information Theory 2, 155 (2006).
- P. Diaconis, Group Representations in Probability and Statistics (IMS, 1988).
- I. G. Macdonald, Symmetric functions and Hall polynomials (Oxford university press, 1998).
- B. Jonnadula, J. P. Keating, and F. Mezzadri, Symmetric function theory and unitary invariant ensembles, Journal of Mathematical Physics 62, 093512 (2021).
- N. Macé, Quantum circuit at criticality (2019), arXiv:1912.09489 [cond-mat.dis-nn] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.