Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Landau-Zener without a Qubit: Unveiling Multiphoton Interference, Synthetic Floquet Dimensions, and Dissipative Quantum Chaos (2404.10051v1)

Published 15 Apr 2024 in quant-ph and cond-mat.mes-hall

Abstract: Landau-Zener-St\"uckelberg-Majorana (LZSM) interference emerges when the parameters of a $\textit{qubit}$ are periodically modulated across an avoided level crossing. Here, we investigate the occurrence of the LZSM phenomenon in nonlinear multilevel bosonic systems, where the interference pattern is determined by multiple energy levels and cannot be described by a level crossing between only two states. We fabricate two superconducting resonators made of flux-tunable Josephson junction arrays. The first device is very weakly nonlinear (the nonlinearity is smaller than the photon-loss rate) and, when a weak driving field is applied, it behaves as a linear resonator, yet shows the same LZSM interference as in a two-level system. Notably, here the interference originates from multiple avoided level crossings of the harmonic ladder. When subjected to a stronger drive, nonlinear effects start playing a role, and the interference pattern departs from the one observed in two-level systems. We demonstrate that, when two or more LZSM interference peaks merge, dissipative quantum chaos emerges. In the second device, where the nonlinearity surpasses the photon-loss rate, we observe additional LZSM interference peaks due to Kerr multiphoton resonances. When described under the light of the Floquet theory, these resonances can be interpreted as synthetic modes of an array of coupled cavities. We derive a simple effective model highlighting the essential features of the entirety of these phenomena. As the control of LZSM in qubit systems led to the implementation of fast protocols for characterization and state preparation, our findings pave the way to better control of nonlinear resonators, with implications for diverse quantum technological platforms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (65)
  1. Alexandre Blais, Arne L. Grimsmo, S. M. Girvin,  and Andreas Wallraff, “Circuit quantum electrodynamics,” Rev. Mod. Phys. 93, 025005 (2021).
  2. Ehud Altman, Kenneth R. Brown, Giuseppe Carleo, Lincoln D. Carr, Eugene Demler, Cheng Chin, Brian DeMarco, Sophia E. Economou, Mark A. Eriksson, Kai-Mei C. Fu, Markus Greiner, Kaden R.A. Hazzard, Randall G. Hulet, Alicia J. Kollár, Benjamin L. Lev, Mikhail D. Lukin, Ruichao Ma, Xiao Mi, Shashank Misra, Christopher Monroe, Kater Murch, Zaira Nazario, Kang-Kuen Ni, Andrew C. Potter, Pedram Roushan, Mark Saffman, Monika Schleier-Smith, Irfan Siddiqi, Raymond Simmonds, Meenakshi Singh, I.B. Spielman, Kristan Temme, David S. Weiss, Jelena Vučković, Vladan Vuletić, Jun Ye,  and Martin Zwierlein, “Quantum simulators: Architectures and opportunities,” PRX Quantum 2, 017003 (2021).
  3. Lev Landau, “Zur theorie der energieubertragung. ii,” Physikalische Zeitschrift der Sowjetunion 2, 46 (1932).
  4. Clarence Zener, “Non-adiabatic crossing of energy levels,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137, 696–702 (1932).
  5. ECG Stückelberg, “Theorie der unelastischen stösse zwischen atomen,” Helv. Phys. Acta 5, 369 (1932).
  6. Ettore Majorana, “Atomi orientati in campo magnetico variabile,” Il Nuovo Cimento (1924-1942) 9, 43–50 (1932).
  7. Oleh V. Ivakhnenko, Sergey N. Shevchenko,  and Franco Nori, “Nonadiabatic landau–zener–stückelberg–majorana transitions, dynamics, and interference,” Physics Reports 995, 1–89 (2023).
  8. William D. Oliver, Yang Yu, Janice C. Lee, Karl K. Berggren, Leonid S. Levitov,  and Terry P. Orlando, “Mach-Zehnder interferometry in a strongly driven superconducting qubit,” Science 310, 1653–1657 (2005).
  9. Mika Sillanpää, Teijo Lehtinen, Antti Paila, Yuriy Makhlin,  and Pertti Hakonen, “Continuous-Time Monitoring of Landau-Zener Interference in a Cooper-Pair Box,” Physical Review Letters 96, 187002 (2006).
  10. J. Stehlik, Y. Dovzhenko, J. R. Petta, J. R. Johansson, F. Nori, H. Lu,  and A. C. Gossard, “Landau-Zener-Stückelberg interferometry of a single electron charge qubit,” Physical Review B 86, 121303 (2012).
  11. F. Forster, G. Petersen, S. Manus, P. Hänggi, D. Schuh, W. Wegscheider, S. Kohler,  and S. Ludwig, “Characterization of Qubit Dephasing by Landau-Zener-Stückelberg-Majorana Interferometry,” Physical Review Letters 112, 116803 (2014).
  12. Lilian Childress and Jean McIntyre, “Multifrequency spin resonance in diamond,” Physical Review A 82, 033839 (2010).
  13. David Niepce, Jonathan J. Burnett, Marina Kudra, Jared H. Cole,  and Jonas Bylander, “Stability of superconducting resonators: Motional narrowing and the role of Landau-Zener driving of two-level defects,” Science Advances 7 (2021), 10.1126/sciadv.abh0462.
  14. E. Dupont-Ferrier, B. Roche, B. Voisin, X. Jehl, R. Wacquez, M. Vinet, M. Sanquer,  and S. De Franceschi, “Coherent Coupling of Two Dopants in a Silicon Nanowire Probed by Landau-Zener-Stückelberg Interferometry,” Physical Review Letters 110, 136802 (2013).
  15. Jiangbo He, Dong Pan, Mingli Liu, Zhaozheng Lyu, Zhongmou Jia, Guang Yang, Shang Zhu, Guangtong Liu, Jie Shen, Sergey N. Shevchenko, Franco Nori, Jianhua Zhao, Li Lu,  and Fanming Qu, “Quantifying quantum coherence of multiple-charge states in tunable Josephson junctions,” npj Quantum Information 10, 1–8 (2024).
  16. Gang Cao, Hai-Ou Li, Tao Tu, Li Wang, Cheng Zhou, Ming Xiao, Guang-Can Guo, Hong-Wen Jiang,  and Guo-Ping Guo, “Ultrafast universal quantum control of a quantum-dot charge qubit using Landau–Zener–Stückelberg interference,” Nature Communications 4, 1401 (2013).
  17. Anasua Chatterjee, Sergey N. Shevchenko, Sylvain Barraud, Rubén M. Otxoa, Franco Nori, John J. L. Morton,  and M. Fernando Gonzalez-Zalba, “A silicon-based single-electron interferometer coupled to a fermionic sea,” Physical Review B 97, 045405 (2018).
  18. Mikael Kervinen, Jhon E. Ramírez-Muñoz, Alpo Välimaa,  and Mika A. Sillanpää, “Landau-Zener-Stückelberg Interference in a Multimode Electromechanical System in the Quantum Regime,” Physical Review Letters 123, 240401 (2019).
  19. P. Y. Wen, O. V. Ivakhnenko, M. A. Nakonechnyi, B. Suri, J.-J. Lin, W.-J. Lin, J. C. Chen, S. N. Shevchenko, Franco Nori,  and I.-C. Hoi, “Landau-Zener-Stückelberg-Majorana interferometry of a superconducting qubit in front of a mirror,” Physical Review B 102, 075448 (2020).
  20. Yu-Han Chang, Dmytro Dubyna, Wei-Chen Chien, Chien-Han Chen, Cen-Shawn Wu,  and Watson Kuo, “Circuit quantum electrodynamics with dressed states of a superconducting artificial atom,” Scientific Reports 12, 22308 (2022).
  21. Jonas Lidal and Jeroen Danon, ‘‘Generation of Schrödinger-cat states through photon-assisted Landau-Zener-Stückelberg interferometry,” Physical Review A 102, 043717 (2020).
  22. Lu Wang, Fulu Zheng, Jiaming Wang, Frank Großmann,  and Yang Zhao, “Schrödinger-Cat States in Landau–Zener–Stückelberg–Majorana Interferometry: A Multiple Davydov Ansatz Approach,” The Journal of Physical Chemistry B 125, 3184–3196 (2021).
  23. O. V. Ivakhnenko, S. N. Shevchenko,  and Franco Nori, “Simulating quantum dynamical phenomena using classical oscillators: Landau-Zener-Stückelberg-Majorana interferometry, latching modulation, and motional averaging,” Scientific Reports 8, 12218 (2018).
  24. Heribert Lorenz, Sigmund Kohler, Anton Parafilo, Mikhail Kiselev,  and Stefan Ludwig, “Classical analogue to driven quantum bits based on macroscopic pendula,” Scientific Reports 13, 18386 (2023).
  25. Lorenzo Bernazzani and Guido Burkard, ‘‘Fluctuating parametric drive of coupled classical oscillators can simulate dissipative qubits,” Physical Review Research 6, 013284 (2024).
  26. Iacopo Carusotto, Andrew A. Houck, Alicia J. Kollár, Pedram Roushan, David I. Schuster,  and Jonathan Simon, “Photonic materials in circuit quantum electrodynamics,” Nature Physics 16, 268–279 (2020).
  27. Iacopo Carusotto and Cristiano Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299–366 (2013).
  28. J. S. Huber, G. Rastelli, M. J. Seitner, J. Kölbl, W. Belzig, M. I. Dykman,  and E. M. Weig, “Spectral evidence of squeezing of a weakly damped driven nanomechanical mode,” Phys. Rev. X 10, 021066 (2020).
  29. Shiqian Ding, Gleb Maslennikov, Roland Hablützel,  and Dzmitry Matsukevich, “Cross-Kerr nonlinearity for phonon counting,” Phys. Rev. Lett. 119, 193602 (2017).
  30. Patrick Winkel, Kiril Borisov, Lukas Grünhaupt, Dennis Rieger, Martin Spiecker, Francesco Valenti, Alexey V. Ustinov, Wolfgang Wernsdorfer,  and Ioan M. Pop, “Implementation of a transmon qubit using superconducting granular aluminum,” Phys. Rev. X 10, 031032 (2020).
  31. Note that here multiphoton resonance refers to the fact that absorbing n𝑛nitalic_n photons leads to the n𝑛nitalic_nth excited state of the resonator. This is not the multiphoton Rabi resonance, where n𝑛nitalic_n driving photons are absorbed to populate the excited level of the qubit.
  32. Mark I. Dykman, Fluctuating Nonlinear Oscillators: From Nanomechanics to Quantum Superconducting Circuits (Oxford University Press, 2012).
  33. Qi-Ming Chen, Michael Fischer, Yuki Nojiri, Michael Renger, Edwar Xie, Matti Partanen, Stefan Pogorzalek, Kirill G. Fedorov, Achim Marx, Frank Deppe,  and Rudolf Gross, “Quantum behavior of the Duffing oscillator at the dissipative phase transition,” Nature Communications 14 (2023), 10.1038/s41467-023-38217-x.
  34. Guillaume Beaulieu, Fabrizio Minganti, Simone Frasca, Vincenzo Savona, Simone Felicetti, Roberto Di Candia,  and Pasquale Scarlino, “Observation of first- and second-order dissipative phase transitions in a two-photon driven Kerr resonator,”   (2023), 10.48550/ARXIV.2310.13636.
  35. M. Foss-Feig, P. Niroula, J. T. Young, M. Hafezi, A. V. Gorshkov, R. M. Wilson,  and M. F. Maghrebi, “Emergent equilibrium in many-body optical bistability,” Physical Review A 95, 043826 (2017).
  36. Filippo Vicentini, Fabrizio Minganti, Riccardo Rota, Giuliano Orso,  and Cristiano Ciuti, “Critical slowing down in driven-dissipative Bose-Hubbard lattices,” Phys. Rev. A 97, 013853 (2018).
  37. Zejian Li, Ferdinand Claude, Thomas Boulier, Elisabeth Giacobino, Quentin Glorieux, Alberto Bramati,  and Cristiano Ciuti, “Dissipative phase transition with driving-controlled spatial dimension and diffusive boundary conditions,” Phys. Rev. Lett. 128, 093601 (2022).
  38. Filippo Ferrari, Luca Gravina, Debbie Eeltink, Pasquale Scarlino, Vincenzo Savona,  and Fabrizio Minganti, “Steady-state quantum chaos in open quantum systems,”   (2023), 10.48550/ARXIV.2305.15479.
  39. Daniel Dahan, Geva Arwas,  and Eytan Grosfeld, “Classical and quantum chaos in chirally-driven, dissipative Bose-Hubbard systems,” npj Quantum Information 8 (2022), 10.1038/s41534-022-00518-2.
  40. Joachim Cohen, Alexandru Petrescu, Ross Shillito,  and Alexandre Blais, “Reminiscence of classical chaos in driven transmons,” PRX Quantum 4, 020312 (2023).
  41. Nicholas A. Masluk, Ioan M. Pop, Archana Kamal, Zlatko K. Minev,  and Michel H. Devoret, “Microwave Characterization of Josephson Junction Arrays: Implementing a Low Loss Superinductance,” Physical Review Letters 109, 137002 (2012).
  42. T. Weißl, B. Küng, E. Dumur, A. K. Feofanov, I. Matei, C. Naud, O. Buisson, F. W. J. Hekking,  and W. Guichard, “Kerr coefficients of plasma resonances in Josephson junction chains,” Physical Review B 92, 104508 (2015).
  43. Yu. Krupko, V. D. Nguyen, T. Weißl, É. Dumur, J. Puertas, R. Dassonneville, C. Naud, F. W. J. Hekking, D. M. Basko, O. Buisson, N. Roch,  and W. Hasch-Guichard, “Kerr nonlinearity in a superconducting Josephson metamaterial,” Physical Review B 98, 094516 (2018).
  44. Daniel A. Lidar, “Lecture notes on the theory of open quantum systems,”   (2019), 10.48550/ARXIV.1902.00967.
  45. Alexandre Le Boité, Strongly correlated photons in arrays of nonlinear cavities, Theses, Université Paris Diderot - Paris 7 (2015).
  46. Rainer Grobe, Fritz Haake,  and Hans-Jürgen Sommers, “Quantum Distinction of Regular and Chaotic Dissipative Motion,” Physical Review Letters 61, 1899–1902 (1988).
  47. A. Lemmer, C. Cormick, D. Tamascelli, T. Schaetz, S. F. Huelga,  and M. B. Plenio, “A trapped-ion simulator for spin-boson models with structured environments,” New Journal of Physics 20, 073002 (2018).
  48. D. L. Underwood, W. E. Shanks, Jens Koch,  and A. A. Houck, “Low-disorder microwave cavity lattices for quantum simulation with photons,” Physical Review A 86, 023837 (2012).
  49. G. P. Fedorov, S. V. Remizov, D. S. Shapiro, W. V. Pogosov, E. Egorova, I. Tsitsilin, M. Andronik, A. A. Dobronosova, I. A. Rodionov, O. V. Astafiev,  and A. V. Ustinov, “Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms,” Physical Review Letters 126, 180503 (2021).
  50. Vincent Jouanny, Simone Frasca, Vera Jo Weibel, Leo Peyruchat, Marco Scigliuzzo, Fabian Oppliger, Franco De Palma, Davide Sbroggio, Guillaume Beaulieu, Oded Zilberberg,  and Pasquale Scarlino, “Band engineering and study of disorder using topology in compact high kinetic inductance cavity arrays,”   (2024), 10.48550/arXiv.2403.18150, 2403.18150 [cond-mat, physics:quant-ph] .
  51. Anton Frisk Kockum, Adam Miranowicz, Simone De Liberato, Salvatore Savasta,  and Franco Nori, “Ultrastrong coupling between light and matter,” Nature Reviews Physics 1, 19–40 (2019).
  52. Mariano Bonifacio, Daniel Domínguez,  and María José Sánchez, “Landau-Zener-Stückelberg interferometry in dissipative circuit quantum electrodynamics,” Physical Review B 101, 245415 (2020).
  53. Raphaël Lescanne, Marius Villiers, Théau Peronnin, Alain Sarlette, Matthieu Delbecq, Benjamin Huard, Takis Kontos, Mazyar Mirrahimi,  and Zaki Leghtas, “Exponential suppression of bit-flips in a qubit encoded in an oscillator,” Nature Physics 16, 509–513 (2020).
  54. Bogdan Damski, “The simplest quantum model supporting the kibble-zurek mechanism of topological defect production: Landau-zener transitions from a new perspective,” Phys. Rev. Lett. 95, 035701 (2005).
  55. Vincenzo Macrì, Alberto Mercurio, Franco Nori, Salvatore Savasta,  and Carlos Sánchez Muñoz, “Spontaneous scattering of raman photons from cavity-qed systems in the ultrastrong coupling regime,” Phys. Rev. Lett. 129, 273602 (2022).
  56. Fabrizio Minganti and Dolf Huybrechts, ‘‘Arnoldi-lindblad time evolution: Faster-than-the-clock algorithm for the spectrum of time-independent and floquet open quantum systems,” Quantum 6, 649 (2022).
  57. H. Markum, R. Pullirsch,  and T. Wettig, “Non-Hermitian Random Matrix Theory and Lattice QCD with Chemical Potential,” Physical Review Letters 83, 484–487 (1999).
  58. Lucas Sá, Pedro Ribeiro,  and Tomaž Prosen, “Complex Spacing Ratios: A Signature of Dissipative Quantum Chaos,” Physical Review X 10, 021019 (2020).
  59. D.F. Walls and Gerard J. Milburn, eds., Quantum Optics (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008).
  60. Howard M. Wiseman and Gerard J. Milburn, Quantum Measurement and Control, 1st ed. (Cambridge University Press, 2009).
  61. J M Kreikebaum, K P O’Brien, A Morvan,  and I Siddiqi, “Improving wafer-scale Josephson junction resistance variation in superconducting quantum coherent circuits,” Superconductor Science and Technology 33, 06LT02 (2020).
  62. Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu,  and Jian Li, “Landau–Zener–Stückelberg Interference in Nonlinear Regime,” Chinese Physics Letters 36, 124204 (2019).
  63. Qi-Ming Chen, Matti Partanen, Florian Fesquet, Kedar E. Honasoge, Fabian Kronowetter, Yuki Nojiri, Michael Renger, Kirill G. Fedorov, Achim Marx, Frank Deppe,  and Rudolf Gross, “Scattering coefficients of superconducting microwave resonators. II. System-bath approach,” Physical Review B 106, 214506 (2022).
  64. M. S. Khalil, M. J. A. Stoutimore, F. C. Wellstood,  and K. D. Osborn, “An analysis method for asymmetric resonator transmission applied to superconducting devices,” Journal of Applied Physics 111, 054510 (2012).
  65. Christopher Eichler and Andreas Wallraff, “Controlling the dynamic range of a Josephson parametric amplifier,” EPJ Quantum Technology 1, 1–19 (2014).
Citations (2)

Summary

We haven't generated a summary for this paper yet.