Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 16 tok/s
GPT-5 High 18 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 459 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Black Hole - Neutron Star Binary Mergers: The Impact of Stellar Compactness (2404.09924v1)

Published 15 Apr 2024 in gr-qc and astro-ph.GA

Abstract: Recent gravitational wave observations include possible detections of black hole - neutron star binary mergers. As with binary black hole mergers, numerical simulations help characterize the sources. For binary systems with neutron star components, the simulations help to predict the imprint of tidal deformations and disruptions on the gravitational wave signals. In a previous study, we investigated how the mass of the black hole has an impact on the disruption of the neutron star and, as a consequence, on the shape of the gravitational waves emitted. We extend these results to study the effects of varying the compactness of the neutron star. We consider neutron star compactness in the 0.123 to 0.2 range for binaries with mass ratios of 3 and 5. As the compactness and the mass ratio increase, the binary system behaves during the late inspiral and merger more like a black hole binary. For the case with the highest mass ratio and most compact neutron star, the gravitational waves emitted, in terms of mismatches, are almost indistinguishable from those by a binary black hole. The disruption of the star significantly suppresses the kicks on the final black hole. The disruption also affects, although not dramatically, the spin of the final black hole. Lastly, for neutron stars with low compactness, the quasi-normal ringing of the black hole after the merger does not show a clean quasi-normal ringing because of the late accretion of debris from the neutron star.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. Etienne Z B, Paschalidis V and Shapiro S L 2012 Phys. Rev. D 86(8) 084026 URL https://link.aps.org/doi/10.1103/PhysRevD.86.084026
  2. Foucart F 2012 Phys. Rev. D 86 124007 (Preprint 1207.6304)
  3. Khamesra B, Gracia-Linares M and Laguna P 2021 Classical and Quantum Gravity 38 185008 URL https://doi.org/10.1088%2F1361-6382%2Fac1a66
  4. Shibata M and Taniguchi K 2011 Living Rev. Rel. 14 6
  5. Clark M and Laguna P 2016 Phys. Rev. D 94 064058 (Preprint 1606.04881)
  6. Baumgarte T W and Shapiro S L 2010 Numerical Relativity: Solving Einstein’s Equations on the Computer (Cambridge University Press)
  7. Bowen J M and York Jr J W 1980 Phys. Rev. D 21 2047–2056
  8. Bowen J M 1979 General Relativity and Gravitation 11 227–231 ISSN 1572-9532 URL https://doi.org/10.1007/BF00762132
  9. Ansorg M, Brügmann B and Tichy W 2004 Phys. Rev. D 70 064011
  10. Evans C, Laguna P and Eracleous M 2015 The Astrophysical Journal Letters 805 L19 ISSN 2041-8205
  11. Clark M and Laguna P 2016 Physical Review D 94 064058
  12. Cupp S et al. 2023 The einstein toolkit URL https://doi.org/10.5281/zenodo.10380404
  13. Baumgarte T W and Shapiro S L 1998 Phys. Rev. D 59(2) 024007 URL https://link.aps.org/doi/10.1103/PhysRevD.59.024007
  14. Shibata M and Nakamura T 1995 Phys. Rev. D 52(10) 5428–5444 URL https://link.aps.org/doi/10.1103/PhysRevD.52.5428
  15. Beyer H R and Sarbach O 2004 Phys. Rev. D 70 104004 (Preprint gr-qc/0406003)
  16. Hawke I, Loffler F and Nerozzi A 2005 Phys. Rev. D 71 104006 (Preprint gr-qc/0501054)
  17. Thornburg J 2004 Class. Quant. Grav. 21 743–766 (Preprint gr-qc/0306056)
  18. Loffler F et al. 2012 Class. Quant. Grav. 29 115001 (Preprint 1111.3344)
  19. Ashtekar A and Krishnan B 2004 Living Reviews in Relativity 7 10 (Preprint gr-qc/0407042)
  20. Zilhão M and Löffler F 2013 Int. J. Mod. Phys. A 28 1340014 (Preprint 1305.5299)
  21. Reisswig C and Pollney D 2011 Class.Quant.Grav. 28 195015 (Preprint 1006.1632)
  22. Schnetter E, Hawley S and Hawke I 2016 Carpet: Adaptive Mesh Refinement for the Cactus Framework (Preprint 1611.016)
  23. Moore C J, Cole R H and Berry C P L 2014 Classical and Quantum Gravity 32 015014 ISSN 1361-6382 URL http://dx.doi.org/10.1088/0264-9381/32/1/015014
  24. Wette K 2020 SoftwareX 12 100634
  25. Kokkotas K D and Ruoff J 2001 Astronomy & Astrophysics 366 565–572 (Preprint gr-qc/0011093)
  26. Berti E, Cardoso V and Will C M 2006 Phys. Rev. D 73 064030 (Preprint gr-qc/0512160)
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.