Hierarchical Decision Making Based on Structural Information Principles (2404.09760v2)
Abstract: Hierarchical Reinforcement Learning (HRL) is a promising approach for managing task complexity across multiple levels of abstraction and accelerating long-horizon agent exploration. However, the effectiveness of hierarchical policies heavily depends on prior knowledge and manual assumptions about skill definitions and task decomposition. In this paper, we propose a novel Structural Information principles-based framework, namely SIDM, for hierarchical Decision Making in both single-agent and multi-agent scenarios. Central to our work is the utilization of structural information embedded in the decision-making process to adaptively and dynamically discover and learn hierarchical policies through environmental abstractions. Specifically, we present an abstraction mechanism that processes historical state-action trajectories to construct abstract representations of states and actions. We define and optimize directed structural entropy, a metric quantifying the uncertainty in transition dynamics between abstract states, to discover skills that capture key transition patterns in RL environments. Building on these findings, we develop a skill-based learning method for single-agent scenarios and a role-based collaboration method for multi-agent scenarios, both of which can flexibly integrate various underlying algorithms for enhanced performance. Extensive evaluations on challenging benchmarks demonstrate that our framework significantly and consistently outperforms state-of-the-art baselines, improving the effectiveness, efficiency, and stability of policy learning by up to 32.70%, 64.86%, and 88.26%, respectively, as measured by average rewards, convergence timesteps, and standard deviations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.