Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

An ultra-broadband photonic-chip-based traveling-wave parametric amplifier (2404.08609v2)

Published 12 Apr 2024 in physics.optics and physics.app-ph

Abstract: Optical amplification, crucial for modern communication and data center interconnects, primarily relies on erbium-doped fiber amplifiers (EDFAs) to enhance signals without distortion. While EDFAs were historically decisive for the introduction of dense wavelength-division multiplexing, they only cover a portion of the low-loss spectrum of optical fibers. Pioneering work on optical traveling-wave parametric amplifiers (TWPAs) utilizing intrinsic third-order optical nonlinearity has led to demonstrations of increased channel capacity and performance. TWPAs are unidirectional, offer high gain, and can reach the 3-dB quantum limit for phase-preserving amplifiers. Despite the use of highly nonlinear fibers or bulk waveguides, their power requirements and technical complexity have impeded adoption. In contrast, TWPAs based on photonic integrated circuits (PICs) offer the advantages of substantially increased mode confinement and optical nonlinearity but have been limited in bandwidth because of the trade-off with maintaining low propagation loss. We overcome this challenge by using low-loss gallium phosphide-on-silicon dioxide PICs and attain up to 35~dB of parametric gain with waveguides only a few centimeters long in a compact footprint of 0.25 square millimeters. Fiber-to-fiber net gain exceeding 10 dB across a bandwidth of approximately 140 nm is achieved, surpassing the gain window of a standard C-band EDFA. We furthermore demonstrate the capability to handle weak signals; input powers can range over six orders of magnitude while maintaining a low noise figure. We exploit these performance characteristics to amplify both optical frequency combs and coherent communication signals. This marks the first ultra-broadband, high-gain, continuous-wave amplification in a PIC, opening up new capabilities for next-generation optical communication, metrology, and sensing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. E. Desurvire, J. R. Simpson, and P. C. Becker, High-gain erbium-doped traveling-wave fiber amplifier, Opt. Lett. 12, 888 (1987).
  2. S. Singh and R. Kaler, Flat-gain L-band Raman-EDFA hybrid optical amplifier for dense wavelength division multiplexed system, IEEE Photonics Technology Letters 25, 250 (2012).
  3. M. J. Connelly, Semiconductor optical amplifiers (Springer Science & Business Media, 2007).
  4. S. B. Yoo, Wavelength conversion technologies for WDM network applications, Journal of Lightwave Technology 14, 955 (1996).
  5. A. D. Ellis, M. A. Z. Al Khateeb, and M. E. McCarthy, Impact of optical phase conjugation on the nonlinear Shannon limit, Journal of Lightwave Technology 35, 792 (2016).
  6. D. M. Pepper and A. Yariv, Compensation for phase distortions in nonlinear media by phase conjugation, Optics letters 5, 59 (1980).
  7. R. A. Fisher, B. Suydam, and D. Yevick, Optical phase conjugation for time-domain undoing of dispersive self-phase-modulation effects, Optics letters 8, 611 (1983).
  8. P. A. Andrekson and M. Karlsson, Fiber-based phase-sensitive optical amplifiers and their applications, Advances in Optics and Photonics 12, 367 (2020).
  9. J. Hansryd and P. A. Andrekson, Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency, IEEE Photonics Technology Letters 13, 194 (2001).
  10. T. Torounidis, P. A. Andrekson, and B.-E. Olsson, Fiber-optical parametric amplifier with 70-dB gain, IEEE Photonics Technology Letters 18, 1194 (2006).
  11. R. Stolen and J. Bjorkholm, Parametric amplification and frequency conversion in optical fibers, IEEE Journal of Quantum Electronics 18, 1062 (1982a).
  12. K.-Y. Wang and A. C. Foster, GHz-rate optical parametric amplifier in hydrogenated amorphous silicon, Journal of Optics 17, 094012 (2015).
  13. D. R. Lide, CRC handbook of chemistry and physics, Vol. 85 (CRC press, 2004).
  14. R. Stolen and J. Bjorkholm, Parametric amplification and frequency conversion in optical fibers, IEEE Journal of Quantum Electronics 18, 1062 (1982b).
  15. D. M. Baney, P. Gallion, and R. S. Tucker, Theory and measurement techniques for the noise figure of optical amplifiers, Optical fiber technology 6, 122 (2000).
  16. M. Hobden and J. Russell, The raman spectrum of gallium phosphide, Physics Letters 13, 39 (1964).
  17. ETSI, Measurement guidelines for DVB systems, Errata 1, ETR 290 (ETSI, 1997).
Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube