Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimation and Inference for Three-Dimensional Panel Data Models (2404.08365v2)

Published 12 Apr 2024 in econ.EM

Abstract: Hierarchical panel data models have recently garnered significant attention. This study contributes to the relevant literature by introducing a novel three-dimensional (3D) hierarchical panel data model, which integrates panel regression with three sets of latent factor structures: one set of global factors and two sets of local factors. Instead of aggregating latent factors from various nodes, as seen in the literature of distributed principal component analysis (PCA), we propose an estimation approach capable of recovering the parameters of interest and disentangling latent factors at different levels and across different dimensions. We establish an asymptotic theory and provide a bootstrap procedure to obtain inference for the parameters of interest while accommodating various types of cross-sectional dependence and time series autocorrelation. Finally, we demonstrate the applicability of our framework by examining productivity convergence in manufacturing industries worldwide.

Summary

We haven't generated a summary for this paper yet.