Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Productivity Convergence in Manufacturing: A Hierarchical Panel Data Approach (2111.00449v1)

Published 31 Oct 2021 in econ.EM

Abstract: Despite its paramount importance in the empirical growth literature, productivity convergence analysis has three problems that have yet to be resolved: (1) little attempt has been made to explore the hierarchical structure of industry-level datasets; (2) industry-level technology heterogeneity has largely been ignored; and (3) cross-sectional dependence has rarely been allowed for. This paper aims to address these three problems within a hierarchical panel data framework. We propose an estimation procedure and then derive the corresponding asymptotic theory. Finally, we apply the framework to a dataset of 23 manufacturing industries from a wide range of countries over the period 1963-2018. Our results show that both the manufacturing industry as a whole and individual manufacturing industries at the ISIC two-digit level exhibit strong conditional convergence in labour productivity, but not unconditional convergence. In addition, our results show that both global and industry-specific shocks are important in explaining the convergence behaviours of the manufacturing industries.

Summary

We haven't generated a summary for this paper yet.