Hilbert space fragmentation from lattice geometry (2404.07825v2)
Abstract: The eigenstate thermalization hypothesis describes how isolated many-body quantum systems reach thermal equilibrium. However, quantum many-body scars and Hilbert space fragmentation violate this hypothesis and cause nonthermal behavior. We demonstrate that Hilbert space fragmentation may arise from lattice geometry in a spin-1/2 model that conserves the number of domain walls. We generalize a known, one-dimensional, scarred model to larger dimensions and show that this model displays Hilbert space fragmentation on the Vicsek fractal lattice and the two-dimensional lattice. Using Monte Carlo methods, the model is characterized as strongly fragmented on the Vicsek fractal lattice when the number of domain walls is either small or close to the maximal value. On the two-dimensional lattice, the model is strongly fragmented when the density of domain walls is low and weakly fragmented when the density of domain walls is high. Furthermore, we show that the fragmentation persists at a finite density of domain walls in the thermodynamic limit for the Vicsek fractal lattice and the two-dimensional lattice. We also show that the model displays signatures similar to Hilbert space fragmentation on a section of the second-generation hexaflake fractal lattice and a modified two-dimensional lattice. We study the autocorrelation function of local observables and demonstrate that the model displays nonthermal dynamics.
- M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).
- J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991).
- M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008).
- A. P. Luca D’Alessio, Yariv Kafri and M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Advances in Physics 65, 239 (2016).
- M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nature Physics 17, 675 (2021).
- S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum many-body scars and Hilbert space fragmentation: a review of exact results, Reports on Progress in Physics 85, 086501 (2022).
- D. P. Arovas, Two exact excited states for the S=1𝑆1S=1italic_S = 1 AKLT chain, Physics Letters A 137, 431 (1989).
- T. Iadecola, M. Schecter, and S. Xu, Quantum many-body scars from magnon condensation, Phys. Rev. B 100, 184312 (2019).
- M. Schecter and T. Iadecola, Weak ergodicity breaking and quantum many-body scars in spin-1 XY𝑋𝑌{X}{Y}italic_X italic_Y magnets, Phys. Rev. Lett. 123, 147201 (2019).
- N. Shibata, N. Yoshioka, and H. Katsura, Onsager’s scars in disordered spin chains, Phys. Rev. Lett. 124, 180604 (2020).
- D. K. Mark and O. I. Motrunich, η𝜂\etaitalic_η-pairing states as true scars in an extended Hubbard model, Phys. Rev. B 102, 075132 (2020).
- T. Iadecola and M. Schecter, Quantum many-body scar states with emergent kinetic constraints and finite-entanglement revivals, Physical Review B 101, 024306 (2020).
- E. Chertkov and B. K. Clark, Motif magnetism and quantum many-body scars, Phys. Rev. B 104, 104410 (2021).
- S. Moudgalya and O. I. Motrunich, Hilbert space fragmentation and commutant algebras, Phys. Rev. X 12, 011050 (2022).
- L. Herviou, J. H. Bardarson, and N. Regnault, Many-body localization in a fragmented Hilbert space, Phys. Rev. B 103, 134207 (2021).
- S. Pai, M. Pretko, and R. M. Nandkishore, Localization in fractonic random circuits, Phys. Rev. X 9, 021003 (2019).
- A. Morningstar, V. Khemani, and D. A. Huse, Kinetically constrained freezing transition in a dipole-conserving system, Phys. Rev. B 101, 214205 (2020).
- V. Khemani, M. Hermele, and R. Nandkishore, Localization from Hilbert space shattering: From theory to physical realizations, Phys. Rev. B 101, 174204 (2020).
- K. Lee, A. Pal, and H. J. Changlani, Frustration-induced emergent Hilbert space fragmentation, Phys. Rev. B 103, 235133 (2021).
- D. Hahn, P. A. McClarty, and D. J. Luitz, Information dynamics in a model with Hilbert space fragmentation, SciPost Phys. 11, 074 (2021).
- C. M. Langlett and S. Xu, Hilbert space fragmentation and exact scars of generalized Fredkin spin chains, Phys. Rev. B 103, L220304 (2021).
- B. Mukherjee, Z. Cai, and W. V. Liu, Constraint-induced breaking and restoration of ergodicity in spin-1 PXP models, Phys. Rev. Res. 3, 033201 (2021a).
- W.-H. Li, X. Deng, and L. Santos, Hilbert space shattering and disorder-free localization in polar lattice gases, Phys. Rev. Lett. 127, 260601 (2021).
- A. Bastianello, U. Borla, and S. Moroz, Fragmentation and emergent integrable transport in the weakly tilted Ising chain, Phys. Rev. Lett. 128, 196601 (2022).
- J. Richter and A. Pal, Anomalous hydrodynamics in a class of scarred frustration-free Hamiltonians, Phys. Rev. Res. 4, L012003 (2022).
- P. Brighi, M. Ljubotina, and M. Serbyn, Hilbert space fragmentation and slow dynamics in particle-conserving quantum east models, SciPost Phys. 15, 093 (2023).
- E. V. H. Doggen, I. V. Gornyi, and D. G. Polyakov, Stark many-body localization: Evidence for Hilbert-space shattering, Phys. Rev. B 103, L100202 (2021).
- L. Caha and D. Nagaj, The pair-flip model: a very entangled translationally invariant spin chain (2018), arXiv:1805.07168 [quant-ph] .
- P. Mazur, Non-ergodicity of phase functions in certain systems, Physica 43, 533 (1969).
- G. W. Anderson, A. Guionnet, and O. Zeitouni, An Introduction to Random Matrices, Cambridge Studies in Advanced Mathematics (Cambridge University Press, 2009).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.