Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Precoder Design for User-Centric Network Massive MIMO with Matrix Manifold Optimization (2404.07425v2)

Published 11 Apr 2024 in eess.SP, cs.IT, and math.IT

Abstract: In this paper, we investigate the precoder design for user-centric network (UCN) massive multiple-input multiple-output (mMIMO) downlink with matrix manifold optimization. In UCN mMIMO systems, each user terminal (UT) is served by a subset of base stations (BSs) instead of all the BSs, facilitating the implementation of the system and lowering the dimension of the precoders to be designed. By proving that the precoder set satisfying the per-BS power constraints forms a Riemannian submanifold of a linear product manifold, we transform the constrained precoder design problem in Euclidean space to an unconstrained one on the Riemannian submanifold. Riemannian ingredients, including orthogonal projection, Riemannian gradient, retraction and vector transport, of the problem on the Riemannian submanifold are further derived, with which the Riemannian conjugate gradient (RCG) design method is proposed for solving the unconstrained problem. The proposed method avoids the inverses of large dimensional matrices, which is beneficial in practice. The complexity analyses show the high computational efficiency of RCG precoder design. Simulation results demonstrate the numerical superiority of the proposed precoder design and the high efficiency of the UCN mMIMO system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. C.-X. Wang, X. You, X.-Q. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang, Y. Huang, Y. Chen, H. Haas et al., “On the road to 6G: Visions, requirements, key technologies and testbeds,” IEEE Commun. Surv. Tutor., 2023.
  2. R. M. Dreifuerst and R. W. Heath, “Massive MIMO in 5G: How beamforming, codebooks, and feedback enable larger arrays,” IEEE Commun. Mag., vol. 61, no. 12, pp. 18–23, 2023.
  3. H. Jin, K. Liu, M. Zhang, L. Zhang, G. Lee, E. N. Farag, D. Zhu, E. Onggosanusi, M. Shafi, and H. Tataria, “Massive MIMO evolution towards 3GPP release 18,” IEEE J. Sel. Areas Commun., 2023.
  4. A.-A. Lu, Y. Chen, and X. Gao, “2D beam domain statistical CSI estimation for massive MIMO uplink,” IEEE Trans. Wireless Commun., vol. 23, no. 1, pp. 749–761, Jan. 2024.
  5. L. You, J. Xu, G. C. Alexandropoulos, J. Wang, W. Wang, and X. Gao, “Energy efficiency maximization of massive MIMO communications with dynamic metasurface antennas,” IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 393–407, Jan. 2023.
  6. L. You, K.-X. Li, J. Wang, X.-Q. Gao, X.-G. Xia, and B. Ottersten, “Massive MIMO transmission for LEO satellite communications,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1851–1865, Jun. 2020.
  7. M. Rahman and H. Yanikomeroglu, “Enhancing cell-edge performance: a downlink dynamic interference avoidance scheme with inter-cell coordination,” IEEE Trans. Wireless Commun., vol. 9, no. 4, pp. 1414–1425, Apr. 2010.
  8. L. You, X. Chen, X. Song, F. Jiang, W. Wang, X.-Q. Gao, and G. Fettweis, “Network massive mimo transmission over millimeter-wave and terahertz bands: Mobility enhancement and blockage mitigation,” IEEE J. Sel. Areas Commun., vol. 38, no. 12, pp. 2946–2960, Dec. 2020.
  9. S. Venkatesan, A. Lozano, and R. Valenzuela, “Network MIMO: Overcoming intercell interference in indoor wireless systems,” in 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, 2007, pp. 83–87.
  10. C. Lee, C.-B. Chae, T. Kim, S. Choi, and J. Lee, “Network massive MIMO for cell-boundary users: From a precoding normalization perspective,” in 2012 IEEE Globecom Workshops, 2012, pp. 233–237.
  11. J. Zhang, S. Chen, Y. Lin, J. Zheng, B. Ai, and L. Hanzo, “Cell-free massive MIMO: A new next-generation paradigm,” IEEE Access, vol. 7, pp. 99 878–99 888, 2019.
  12. S. Elhoushy, M. Ibrahim, and W. Hamouda, “Cell-free massive mimo: A survey,” IEEE Commun. Surv. Tutor., vol. 24, no. 1, pp. 492–523, 2022.
  13. H. I. Obakhena, A. L. Imoize, F. I. Anyasi, and K. Kavitha, “Application of cell-free massive MIMO in 5G and beyond 5G wireless networks: A survey,” Journal of Engineering and Applied Science, vol. 68, no. 1, pp. 1–41, 2021.
  14. I. Kanno, K. Yamazaki, Y. Kishi, and S. Konishi, “A survey on research activities for deploying cell free massive MIMO towards beyond 5G,” IEICE Trans. Commun., vol. 105, no. 10, pp. 1107–1116, 2022.
  15. S. Chen, L. Chen, B. Hu, S. Sun, Y. Wang, H. Wang, and W. Gao, “User-centric access network (UCAN) for 6G: Motivation, concept, challenges and key technologies,” IEEE Network, 2023.
  16. L. Qin, H. Lu, and F. Wu, “When the user-centric network meets mobile edge computing: Challenges and optimization,” IEEE Communications Magazine, vol. 61, no. 1, pp. 114–120, 2022.
  17. H. A. Ammar, R. Adve, S. Shahbazpanahi, G. Boudreau, and K. V. Srinivas, “User-centric cell-free massive MIMO networks: A survey of opportunities, challenges and solutions,” IEEE Commun. Surv. Tutor., vol. 24, no. 1, pp. 611–652, Firstquarter 2022.
  18. X. Lai, J. Xia, L. Fan, T. Q. Duong, and A. Nallanathan, “Outdated access point selection for mobile edge computing with cochannel interference,” IEEE Trans. Veh. Technol., vol. 71, no. 7, pp. 7445–7455, Jul. 2022.
  19. M. A. Albreem, A. H. Al Habbash, A. M. Abu-Hudrouss, and S. S. Ikki, “Overview of precoding techniques for massive MIMO,” IEEE Access, vol. 9, pp. 60 764–60 801, 2021.
  20. J. Shi, A.-A. Lu, W. Zhong, X. Gao, and G. Y. Li, “Robust WMMSE precoder with deep learning design for massive MIMO,” IEEE Trans. Commun., vol. 71, no. 7, pp. 3963–3976, Jul. 2023.
  21. X. Yu, X. Gao, A.-A. Lu, J. Zhang, H. Wu, and G. Y. Li, “Robust precoding for HF skywave massive MIMO,” IEEE Trans. Wireless Commun., vol. 22, no. 10, pp. 6691–6705, Oct. 2023.
  22. Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4331–4340, Sep. 2011.
  23. C. Ding, J.-B. Wang, H. Zhang, M. Lin, and G. Y. Li, “Joint MIMO precoding and computation resource allocation for dual-function radar and communication systems with mobile edge computing,” IEEE J. Sel. Areas Commun., vol. 40, no. 7, pp. 2085–2102, Jul. 2022.
  24. Y. Yuan, R. He, B. Ai, Z. Ma, Y. Miao, Y. Niu, J. Zhang, R. Chen, and Z. Zhong, “A 3D geometry-based THz channel model for 6G ultra massive MIMO systems,” IEEE Transactions on Vehicular Technology, vol. 71, no. 3, pp. 2251–2266, Mar. 2022.
  25. E. Shtaiwi, H. Zhang, A. Abdelhadi, A. Lee Swindlehurst, Z. Han, and H. Vincent Poor, “Sum-rate maximization for RIS-assisted integrated sensing and communication systems with manifold optimization,” IEEE Trans. Commun., pp. 1–1, 2023.
  26. C.-p. Lee, “Accelerating inexact successive quadratic approximation for regularized optimization through manifold identification,” Math. Program., pp. 1–35, 2023.
  27. T. Osa, “Motion planning by learning the solution manifold in trajectory optimization,” Int. J. Rob. Res., vol. 41, no. 3, pp. 281–311, 2022.
  28. Q. Le, Q. Shi, Q. Liu, X. Yao, X. Ju, and C. Xu, “Numerical investigation on manifold immersion cooling scheme for lithium ion battery thermal management application,” Int. J. Heat Mass Trans., vol. 190, p. 122750, 2022.
  29. J. Choi, Y. Cho, and B. L. Evans, “Quantized massive MIMO systems with multicell coordinated beamforming and power control,” IEEE Trans. Commun., vol. 69, no. 2, pp. 946–961, Feb. 2021.
  30. H. Sato, “Riemannian conjugate gradient methods: General framework and specific algorithms with convergence analyses,” SIAM J. Optim., vol. 32, no. 4, pp. 2690–2717, 2022.
  31. Z. Wu and Z. Fei, “Precoder design in downlink CoMP-JT MIMO network via WMMSE and asynchronous ADMM,” Science China Information Sciences, vol. 61, pp. 1–13, 2018.
  32. S. Jaeckel, L. Raschkowski, K. Borner, and L. Thiele, “Quadriga: A 3-D multi-cell channel model with time evolution for enabling virtual field trials,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 3242–3256, Jun. 2014.
  33. 3GPP, “NR and NG-RAN overall description,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.300, 10 2023, version 17.6.0.
  34. 3GPP, “Base Station (BS) radio transmission and reception,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.104, 07 2023, version 17.10.0.
  35. 3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 38.901, 04 2022, version 17.0.0.
  36. N. Fatema, G. Hua, Y. Xiang, D. Peng, and I. Natgunanathan, “Massive MIMO linear precoding: A survey,” IEEE Systems Journal, vol. 12, no. 4, pp. 3920–3931, 2018.
  37. H. R. Chayon, K. B. Dimyati, H. Ramiah, and A. W. Reza, “Enhanced quality of service of cell-edge user by extending modified largest weighted delay first algorithm in LTE networks,” Symmetry, vol. 9, no. 6, p. 81, 2017.

Summary

We haven't generated a summary for this paper yet.