Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Precoder Design for Massive MIMO Downlink with Matrix Manifold Optimization (2304.00201v2)

Published 1 Apr 2023 in cs.IT, eess.SP, and math.IT

Abstract: We investigate the weighted sum-rate (WSR) maximization linear precoder design for massive multiple-input multiple-output (MIMO) downlink. We consider a single-cell system with multiple users and propose a unified matrix manifold optimization framework applicable to total power constraint (TPC), per-user power constraint (PUPC) and per-antenna power constraint (PAPC). We prove that the precoders under TPC, PUPC and PAPC are on distinct Riemannian submanifolds, and transform the constrained problems in Euclidean space to unconstrained ones on manifolds. In accordance with this, we derive Riemannian ingredients, including orthogonal projection, Riemannian gradient, Riemannian Hessian, retraction and vector transport, which are needed for precoder design in the matrix manifold framework. Then, Riemannian design methods using Riemannian steepest descent, Riemannian conjugate gradient and Riemannian trust region are provided to design the WSR-maximization precoders under TPC, PUPC or PAPC. Riemannian methods do not involve the inverses of the large dimensional matrices during the iterations, reducing the computational complexities of the algorithms. Complexity analyses and performance simulations demonstrate the advantages of the proposed precoder design.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. E. Björnson, L. Sanguinetti, H. Wymeersch, J. Hoydis, and T. L. Marzetta, “Massive MIMO is a reality—What is next?: Five promising research directions for antenna arrays,” Digit. Signal Process., vol. 94, pp. 3–20, Nov. 2019.
  2. E. D. Carvalho, A. Ali, A. Amiri, M. Angjelichinoski, and R. W. Heath, “Non-stationarities in extra-large-scale massive MIMO,” IEEE Wireless Commun., vol. 27, pp. 74–80, Aug. 2020.
  3. E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems.” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.
  4. T. Ketseoglou, M. C. Valenti, and E. Ayanoglu, “Millimeter wave massive MIMO downlink per-group communications with hybrid linear precoding,” IEEE Trans. Veh. Technol., vol. 70, no. 7, pp. 6841–6854, Jul. 2021.
  5. S. Jing and C. Xiao, “Linear MIMO precoders with finite alphabet inputs via stochastic optimization and deep neural networks (DNNs),” IEEE Trans. Signal Process., vol. 69, pp. 4269–4281, 2021.
  6. Y. Zhang, P. Mitran, and C. Rosenberg, “Joint resource allocation for linear precoding in downlink massive MIMO systems,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3039–3053, May 2021.
  7. V. M. T. Palhares, A. R. Flores, and R. C. de Lamare, “Robust MMSE precoding and power allocation for cell-free massive MIMO systems,” IEEE Trans. Veh. Technol., vol. 70, no. 5, pp. 5115–5120, May 2021.
  8. S. S. Christensen, R. Agarwal, E. De Carvalho, and J. M. Cioffi, “Weighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming design,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 4792–4799, Dec. 2008.
  9. T. X. Vu, S. Chatzinotas, and B. Ottersten, “Dynamic bandwidth allocation and precoding design for highly-loaded multiuser MISO in beyond 5G networks,” IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 1794–1805, Mar. 2022.
  10. J. Zhang, C.-K. Wen, C. Yuen, S. Jin, and X. Q. Gao, “Large system analysis of cognitive radio network via partially-projected regularized zero-forcing precoding,” IEEE Trans. Wireless Commun., vol. 14, no. 9, pp. 4934–4947, Sep. 2015.
  11. T. X. Tran and K. C. Teh, “Spectral and energy efficiency analysis for SLNR precoding in massive MIMO systems with imperfect CSI,” IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 4017–4027, Jun. 2018.
  12. L. You, X. Qiang, K.-X. Li, C. G. Tsinos, W. Wang, X. Q. Gao, and B. Ottersten, “Massive MIMO hybrid precoding for LEO satellite communications with twin-resolution phase shifters and nonlinear power amplifiers,” IEEE Trans. Commun., vol. 70, no. 8, pp. 5543–5557, Aug. 2022.
  13. A.-A. Lu, X. Q. Gao, W. Zhong, C. Xiao, and X. Meng, “Robust transmission for massive MIMO downlink with imperfect CSI,” IEEE Trans. Commun., vol. 67, no. 8, pp. 5362–5376, Aug. 2019.
  14. R. Muharar, R. Zakhour, and J. Evans, “Optimal power allocation and user loading for multiuser MISO channels with regularized channel inversion,” IEEE Trans. Commun., vol. 61, no. 12, pp. 5030–5041, Dec. 2013.
  15. J. Choi, S. Han, and J. Joung, “Low-complexity multiuser MIMO precoder design under per-antenna power constraints,” IEEE Trans. Veh. Technol., vol. 67, no. 9, pp. 9011–9015, Sep. 2018.
  16. X. Hu and X. Dai, “Low-complexity WSRMax precoder design using the dual coordinate ascent method,” IEEE Wireless Commun. Lett., vol. 12, no. 2, pp. 361–365, Feb. 2023.
  17. J. Chen, Y. Yin, T. Birdal, B. Chen, L. J. Guibas, and H. Wang, “Projective manifold gradient layer for deep rotation regression,” Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp. 6646–6655, 2022.
  18. K. Li and R. Chen, “Batched data-driven evolutionary multiobjective optimization based on manifold interpolation,” IEEE Trans. Evol. Comput., vol. 27, no. 1, pp. 126–140, Feb. 2023.
  19. C. Feres and Z. Ding, “A Riemannian geometric approach to blind signal recovery for grant-free radio network access,” IEEE Trans. Signal Process., vol. 70, pp. 1734–1748, 2022.
  20. J. Dong, K. Yang, and Y. Shi, “Blind demixing for low-latency communication,” IEEE Trans. Wireless Commun., vol. 18, no. 2, pp. 897–911, Feb. 2019.
  21. W. Guo, A.-A. Lu, X. Meng, X. Q. Gao, and N. Ma, “Broad coverage precoding design for massive MIMO with manifold optimization,” IEEE Trans. Commun., vol. 67, no. 4, pp. 2792–2806, Apr. 2019.
  22. C. Wang, A.-A. Lu, X. Q. Gao, and Z. Ding, “Robust precoding for 3D massive MIMO configuration with matrix manifold optimization,” IEEE Trans. Wireless Commun., vol. 21, no. 5, pp. 3423–3437, May 2022.
  23. P.-A. Absil and K. Gallivan, “Joint diagonalization on the oblique manifold for independent component analysis,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2006, pp. 945–948.
  24. J. Li, G. Liao, Y. Huang, Z. Zhang, and A. Nehorai, “Riemannian geometric optimization methods for joint design of transmit sequence and receive filter on MIMO radar,” IEEE Trans. Signal Process., vol. 68, pp. 5602–5616, 2020.
  25. P. H. Calamai and J. J. Moré, “Projected gradient methods for linearly constrained problems,” Mathematical programming, vol. 39, no. 1, pp. 93–116, 1987.
  26. J. Sun, Q. Qu, and J. Wright, “Complete dictionary recovery over the sphere ii: Recovery by Riemannian trust-region method,” IEEE Trans. on Inf. Theory, vol. 63, no. 2, pp. 885–914, Feb. 2017.
  27. P.-A. Absil, C. G. Baker, and K. A. Gallivan, “Trust-region methods on Riemannian manifolds.” Found. Comput. Math., vol. 7, no. 3, pp. 303–330, Jul. 2007.
  28. P. Patcharamaneepakorn, A. Doufexi, and S. Armour, “Equivalent expressions and performance analysis of SLNR precoding schemes: a generalisation to multi-antenna receivers,” IEEE Commun. Lett., vol. 17, no. 6, pp. 1196–1199, 2013.
  29. Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4331–4340, Sep. 2011.
  30. S. Jaeckel, L. Raschkowski, K. Borner, and L. Thiele, “Quadriga: A 3-D multi-cell channel model with time evolution for enabling virtual field trials,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 3242–3256, Jun. 2014.
  31. C. Peel, B. Hochwald, and A. Swindlehurst, “A vector-perturbation technique for near-capacity multiantenna multiuser communication-part i: channel inversion and regularization,” IEEE Trans. on Commun., vol. 53, no. 1, pp. 195–202, Jan. 2005.
  32. N. Boumal, P.-A. Absil, and C. Cartis, “Global rates of convergence for nonconvex optimization on manifolds,” IMA J. Numer. Anal., vol. 39, no. 1, pp. 1–33, 2019.
Citations (1)

Summary

We haven't generated a summary for this paper yet.