Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The Physical Origin of the Stellar Initial Mass Function (2404.07301v2)

Published 10 Apr 2024 in astro-ph.GA

Abstract: Stars are amongst the most fundamental structures of our Universe. They comprise most of the baryonic and luminous mass of galaxies, synthethise heavy elements, and injec\ t mass, momentum, and energy into the interstellar medium. They are also home to the planets. Since stellar properties are primarily decided by their mass, the so-called \ stellar initial mass function (IMF) is critical to the structuring of our Universe. We review the various physical processes, and theories which have been put forward as well as the numerical simulations which have been carried out to explain the origin of the stellar initial mass function. Key messages from this review are: (1) Gravity and turbulence most likely determine the power-law, high-mass part of the IMF. (2) Depending of the Mach number and the density distribution, several regimes are possible, including $\Gamma {IMF} \simeq 0$, -0.8, -1 or -1.3 where $d N / d \log M \propto M{\Gamma{IMF}}$. These regimes are likely universal, however the transition between these regimes is not. (3) Protostellar jets can play a regulating influence on the IMF by injecting momentum into collapsing clumps and unbinding gas. (4) The peak of the IMF may be a consequence of dust opacity and molecular hydrogen physics at the origin of the first hydrostatic core. This depends weakly on large scale environmental conditions such as radiation, magnetic field, turbulence or metallicity. This likely constitutes one of the reason of the relative universality of the IMF.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (129)
  1. Bakes ELO, Tielens AGGM. 1994. ApJ 427:822
  2. Ballesteros-Paredes J. 2006. MNRAS 372(1):443–449
  3. Bally J. 2016. ARA&A 54:491–528
  4. Banerjee S, Kroupa P. 2012. A&A 547:A23
  5. Basu S. 2000. ApJ 540(2):L103–L106
  6. Basu S, Jones CE. 2004. MNRAS 347(3):L47–L51
  7. Bate MR. 2009. MNRAS 392(4):1363–1380
  8. Bate MR. 2012. MNRAS 419(4):3115–3146
  9. Bate MR. 2014. MNRAS 442:285–313
  10. Bate MR. 2019. MNRAS 484(2):2341–2361
  11. Bate MR. 2023. MNRAS 519(1):688–708
  12. Bate MR, Bonnell IA. 2005. MNRAS 356:1201–1221
  13. Bate MR, Burkert A. 1997. MNRAS 288(4):1060–1072
  14. Baumgardt H, Sollima S. 2017. MNRAS 472(1):744–750
  15. Bialy S, Sternberg A. 2019. ApJ 881(2):160
  16. Binney J, Tremaine S. 2008. Galactic Dynamics: Second Edition
  17. Black DC, Bodenheimer P. 1975. ApJ 199:619–632
  18. Blandford RD, Payne DG. 1982. MNRAS 199:883–903
  19. Bleuler A, Teyssier R. 2014. MNRAS 445(4):4015–4036
  20. Bonnor WB. 1956. MNRAS 116:351
  21. Castaing B. 1996. Journal de Physique II 6(1):105–114
  22. Chabrier G. 2003. PASP 115:763–795
  23. Chabrier G, Lenoble R. 2023. arXiv e-prints :arXiv:2301.05139
  24. Chakrabarti S, McKee CF. 2008. ApJ 683(2):693–706
  25. Colman T, Teyssier R. 2020. MNRAS 492(4):4727–4751
  26. Crutcher RM. 2012. ARA&A 50:29–63
  27. Dib S. 2014. MNRAS 444(2):1957–1981
  28. Draine BT. 2011. Physics of the Interstellar and Intergalactic Medium
  29. Edgar R. 2004. New A Rev. 48(10):843–859
  30. Elmegreen BG, Mathieu RD. 1983. MNRAS 203:305–315
  31. Elmegreen BG, Scalo J. 2004. ARA&A 42:211–273
  32. Federrath C. 2013. MNRAS 436:1245–1257
  33. Federrath C. 2015. MNRAS 450(4):4035–4042
  34. Foster PN, Chevalier RA. 1993. ApJ 416:303
  35. Glover SCO, Abel T. 2008. MNRAS 388(4):1627–1651
  36. Glover SCO, Clark PC. 2012. MNRAS 421(1):9–19
  37. Glover SCO, Jappsen AK. 2007. ApJ 666(1):1–19
  38. Goldsmith PF. 2001. ApJ 557(2):736–746
  39. Gong M, Ostriker EC. 2015. ApJ 806:31
  40. Grudić MY, Hopkins PF. 2023. arXiv e-prints :arXiv:2308.16268
  41. Guerrero-Gamboa R, Vázquez-Semadeni E. 2020. ApJ 903(2):136
  42. Hennebelle P. 2021. A&A 655:A3
  43. Hennebelle P, Chabrier G. 2008. ApJ 684:395–410
  44. Hennebelle P, Chabrier G. 2009. ApJ 702:1428–1442
  45. Hennebelle P, Falgarone E. 2012. A&A Rev. 20:55
  46. Hennebelle P, Inutsuka Si. 2019. Frontiers in Astronomy and Space Sciences 6:5
  47. Hollenbach D, McKee CF. 1979. ApJS 41:555–592
  48. Hopkins AM. 2018. PASA 35:e039
  49. Hopkins PF. 2012a. MNRAS 423:2016–2036
  50. Hopkins PF. 2012b. MNRAS 423:2037–2044
  51. Hopkins PF. 2013a. MNRAS 430:1880–1891
  52. Hopkins PF. 2013b. MNRAS 433(1):170–177
  53. Hosokawa T, Omukai K. 2009. ApJ 691(1):823–846
  54. Hoyle F. 1953. ApJ 118:513
  55. Indriolo N, McCall BJ. 2012. ApJ 745(1):91
  56. Inutsuka Si. 2001. ApJ 559(2):L149–L152
  57. Inutsuka SI, Miyama SM. 1992. ApJ 388:392–399
  58. Jeans JH. 1902. Philosophical Transactions of the Royal Society of London Series A 199:1–53
  59. Jones MO, Bate MR. 2018. MNRAS 478(2):2650–2662
  60. Klessen RS. 2001. ApJ 556(2):837–846
  61. Klessen RS, Glover SCO. 2023. arXiv e-prints :arXiv:2303.12500
  62. Kolmogorov A. 1941. Akademiia Nauk SSSR Doklady 30:301–305
  63. Kroupa P. 2002. Science 295:82–91
  64. Krumholz MR. 2011. ApJ 743:110
  65. Krumholz MR. 2014. Phys. Rep. 539:49–134
  66. Krumholz MR. 2015. arXiv e-prints :arXiv:1511.03457
  67. Krumholz MR, Federrath C. 2019. arXiv e-prints
  68. Krumholz MR, Matzner CD. 2009. ApJ 703(2):1352–1362
  69. Larson RB. 1969. MNRAS 145:271
  70. Larson RB. 1973. MNRAS 161:133
  71. Larson RB. 1981. MNRAS 194:809–826
  72. Larson RB. 2005. MNRAS 359(1):211–222
  73. Larson RB, Starrfield S. 1971. A&A 13:190
  74. Lee YN, Hennebelle P. 2018a. A&A 611:A88
  75. Lee YN, Hennebelle P. 2018b. A&A 611:A89
  76. Lee YN, Hennebelle P. 2019. A&A 622:A125
  77. Low C, Lynden-Bell D. 1976. MNRAS 176:367–390
  78. Luhman KL. 2012. ARA&A 50:65–106
  79. Luhman KL. 2018. AJ 156(6):271
  80. Mac Low MM. 1999. ApJ 524(1):169–178
  81. Mac Low MM, Klessen RS. 2004. Reviews of Modern Physics 76:125–194
  82. Maschberger T. 2013a. MNRAS 429:1725–1733
  83. Maschberger T. 2013b. MNRAS 436(2):1381–1389
  84. Massey P. 2003. ARA&A 41:15–56
  85. Masunaga H, Inutsuka Si. 2000. ApJ 531:350–365
  86. Mathew SS, Federrath C. 2021. MNRAS 507(2):2448–2467
  87. Matzner CD, McKee CF. 1999. ApJ 526(2):L109–L112
  88. McKee CF, Ostriker EC. 2007. ARA&A 45:565–687
  89. McKee CF, Tan JC. 2003. ApJ 585(2):850–871
  90. Moe M, Di Stefano R. 2016. ArXiv e-prints
  91. Myers PC. 2009. ApJ 706(2):1341–1352
  92. Naab T, Ostriker JP. 2017. ARA&A 55(1):59–109
  93. Neufeld DA, Wolfire MG. 2017. ApJ 845(2):163
  94. Osterbrock DE, Ferland GJ. 2006. Astrophysics of gaseous nebulae and active galactic nuclei
  95. Ostriker EC, Kim CG. 2022. ApJ 936(2):137
  96. Padoan P, Nordlund Å. 2002. ApJ 576:870–879
  97. Padovani M. 2023. On the origin of cosmic-ray ionisation in star-forming regions. In Physics and Chemistry of Star Formation: The Dynamical ISM Across Time and Spatial Scales
  98. Palla F, Stahler SW. 1991. ApJ 375:288
  99. Pelletier G, Pudritz RE. 1992. ApJ 394:117
  100. Penston MV. 1969. MNRAS 144:425
  101. Press WH, Schechter P. 1974. ApJ 187:425–438
  102. Price NM, Podsiadlowski P. 1995. MNRAS 273(4):1041–1068
  103. Rabatin B, Collins DC. 2022. MNRAS
  104. Rees MJ. 1976. MNRAS 176:483–486
  105. Robertson B, Goldreich P. 2012. ApJ 750:L31
  106. Rogers H, Pittard JM. 2013. MNRAS 431(2):1337–1351
  107. Rosen AL. 2022. ApJ 941(2):202
  108. Ruffert M. 1996. A&A 311:817–832
  109. Salpeter EE. 1955. ApJ 121:161
  110. Schmidt M. 1963. ApJ 137:758
  111. Sharda P, Krumholz MR. 2022. MNRAS 509(2):1959–1984
  112. Shu FH. 1977. ApJ 214:488–497
  113. Silk J. 1977. ApJ 214:152–160
  114. Silk J. 1995. ApJ 438:L41
  115. Smith RJ. 2020. ARA&A 58:577–615
  116. Sollima A. 2019. MNRAS 489(2):2377–2394
  117. Tanvir TS, Krumholz MR. 2023. arXiv e-prints :arXiv:2305.20039
  118. Teyssier R, Commerçon B. 2019. Frontiers in Astronomy and Space Sciences 6:51
  119. Tielens AGGM. 2005. The Physics and Chemistry of the Interstellar Medium
  120. van Dokkum PG, Conroy C. 2010. Nature 468:940–942
  121. Vaytet N, Haugbølle T. 2017. A&A 598:A116
  122. Vázquez-Semadeni E. 1994. ApJ 423:681
  123. Walch S, Naab T. 2015. MNRAS 451:2757–2771
  124. Weingartner JC, Draine BT. 2001. ApJS 134(2):263–281
  125. Whitworth AP, Jaffa SE. 2018. A&A 611:A20
  126. Wiesenfeld L, Goldsmith PF. 2014. ApJ 780(2):183
  127. Zentner AR. 2007. International Journal of Modern Physics D 16(5):763–815
  128. Zinnecker H. 1982. Annals of the New York Academy of Sciences 395:226–235
  129. Zinnecker H. 1984. MNRAS 210:43–56
Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.