The Physical Origin of the Stellar Initial Mass Function (2404.07301v2)
Abstract: Stars are amongst the most fundamental structures of our Universe. They comprise most of the baryonic and luminous mass of galaxies, synthethise heavy elements, and injec\ t mass, momentum, and energy into the interstellar medium. They are also home to the planets. Since stellar properties are primarily decided by their mass, the so-called \ stellar initial mass function (IMF) is critical to the structuring of our Universe. We review the various physical processes, and theories which have been put forward as well as the numerical simulations which have been carried out to explain the origin of the stellar initial mass function. Key messages from this review are: (1) Gravity and turbulence most likely determine the power-law, high-mass part of the IMF. (2) Depending of the Mach number and the density distribution, several regimes are possible, including $\Gamma {IMF} \simeq 0$, -0.8, -1 or -1.3 where $d N / d \log M \propto M{\Gamma{IMF}}$. These regimes are likely universal, however the transition between these regimes is not. (3) Protostellar jets can play a regulating influence on the IMF by injecting momentum into collapsing clumps and unbinding gas. (4) The peak of the IMF may be a consequence of dust opacity and molecular hydrogen physics at the origin of the first hydrostatic core. This depends weakly on large scale environmental conditions such as radiation, magnetic field, turbulence or metallicity. This likely constitutes one of the reason of the relative universality of the IMF.
- Bakes ELO, Tielens AGGM. 1994. ApJ 427:822
- Ballesteros-Paredes J. 2006. MNRAS 372(1):443–449
- Bally J. 2016. ARA&A 54:491–528
- Banerjee S, Kroupa P. 2012. A&A 547:A23
- Basu S. 2000. ApJ 540(2):L103–L106
- Basu S, Jones CE. 2004. MNRAS 347(3):L47–L51
- Bate MR. 2009. MNRAS 392(4):1363–1380
- Bate MR. 2012. MNRAS 419(4):3115–3146
- Bate MR. 2014. MNRAS 442:285–313
- Bate MR. 2019. MNRAS 484(2):2341–2361
- Bate MR. 2023. MNRAS 519(1):688–708
- Bate MR, Bonnell IA. 2005. MNRAS 356:1201–1221
- Bate MR, Burkert A. 1997. MNRAS 288(4):1060–1072
- Baumgardt H, Sollima S. 2017. MNRAS 472(1):744–750
- Bialy S, Sternberg A. 2019. ApJ 881(2):160
- Binney J, Tremaine S. 2008. Galactic Dynamics: Second Edition
- Black DC, Bodenheimer P. 1975. ApJ 199:619–632
- Blandford RD, Payne DG. 1982. MNRAS 199:883–903
- Bleuler A, Teyssier R. 2014. MNRAS 445(4):4015–4036
- Bonnor WB. 1956. MNRAS 116:351
- Castaing B. 1996. Journal de Physique II 6(1):105–114
- Chabrier G. 2003. PASP 115:763–795
- Chabrier G, Lenoble R. 2023. arXiv e-prints :arXiv:2301.05139
- Chakrabarti S, McKee CF. 2008. ApJ 683(2):693–706
- Colman T, Teyssier R. 2020. MNRAS 492(4):4727–4751
- Crutcher RM. 2012. ARA&A 50:29–63
- Dib S. 2014. MNRAS 444(2):1957–1981
- Draine BT. 2011. Physics of the Interstellar and Intergalactic Medium
- Edgar R. 2004. New A Rev. 48(10):843–859
- Elmegreen BG, Mathieu RD. 1983. MNRAS 203:305–315
- Elmegreen BG, Scalo J. 2004. ARA&A 42:211–273
- Federrath C. 2013. MNRAS 436:1245–1257
- Federrath C. 2015. MNRAS 450(4):4035–4042
- Foster PN, Chevalier RA. 1993. ApJ 416:303
- Glover SCO, Abel T. 2008. MNRAS 388(4):1627–1651
- Glover SCO, Clark PC. 2012. MNRAS 421(1):9–19
- Glover SCO, Jappsen AK. 2007. ApJ 666(1):1–19
- Goldsmith PF. 2001. ApJ 557(2):736–746
- Gong M, Ostriker EC. 2015. ApJ 806:31
- Grudić MY, Hopkins PF. 2023. arXiv e-prints :arXiv:2308.16268
- Guerrero-Gamboa R, Vázquez-Semadeni E. 2020. ApJ 903(2):136
- Hennebelle P. 2021. A&A 655:A3
- Hennebelle P, Chabrier G. 2008. ApJ 684:395–410
- Hennebelle P, Chabrier G. 2009. ApJ 702:1428–1442
- Hennebelle P, Falgarone E. 2012. A&A Rev. 20:55
- Hennebelle P, Inutsuka Si. 2019. Frontiers in Astronomy and Space Sciences 6:5
- Hollenbach D, McKee CF. 1979. ApJS 41:555–592
- Hopkins AM. 2018. PASA 35:e039
- Hopkins PF. 2012a. MNRAS 423:2016–2036
- Hopkins PF. 2012b. MNRAS 423:2037–2044
- Hopkins PF. 2013a. MNRAS 430:1880–1891
- Hopkins PF. 2013b. MNRAS 433(1):170–177
- Hosokawa T, Omukai K. 2009. ApJ 691(1):823–846
- Hoyle F. 1953. ApJ 118:513
- Indriolo N, McCall BJ. 2012. ApJ 745(1):91
- Inutsuka Si. 2001. ApJ 559(2):L149–L152
- Inutsuka SI, Miyama SM. 1992. ApJ 388:392–399
- Jeans JH. 1902. Philosophical Transactions of the Royal Society of London Series A 199:1–53
- Jones MO, Bate MR. 2018. MNRAS 478(2):2650–2662
- Klessen RS. 2001. ApJ 556(2):837–846
- Klessen RS, Glover SCO. 2023. arXiv e-prints :arXiv:2303.12500
- Kolmogorov A. 1941. Akademiia Nauk SSSR Doklady 30:301–305
- Kroupa P. 2002. Science 295:82–91
- Krumholz MR. 2011. ApJ 743:110
- Krumholz MR. 2014. Phys. Rep. 539:49–134
- Krumholz MR. 2015. arXiv e-prints :arXiv:1511.03457
- Krumholz MR, Federrath C. 2019. arXiv e-prints
- Krumholz MR, Matzner CD. 2009. ApJ 703(2):1352–1362
- Larson RB. 1969. MNRAS 145:271
- Larson RB. 1973. MNRAS 161:133
- Larson RB. 1981. MNRAS 194:809–826
- Larson RB. 2005. MNRAS 359(1):211–222
- Larson RB, Starrfield S. 1971. A&A 13:190
- Lee YN, Hennebelle P. 2018a. A&A 611:A88
- Lee YN, Hennebelle P. 2018b. A&A 611:A89
- Lee YN, Hennebelle P. 2019. A&A 622:A125
- Low C, Lynden-Bell D. 1976. MNRAS 176:367–390
- Luhman KL. 2012. ARA&A 50:65–106
- Luhman KL. 2018. AJ 156(6):271
- Mac Low MM. 1999. ApJ 524(1):169–178
- Mac Low MM, Klessen RS. 2004. Reviews of Modern Physics 76:125–194
- Maschberger T. 2013a. MNRAS 429:1725–1733
- Maschberger T. 2013b. MNRAS 436(2):1381–1389
- Massey P. 2003. ARA&A 41:15–56
- Masunaga H, Inutsuka Si. 2000. ApJ 531:350–365
- Mathew SS, Federrath C. 2021. MNRAS 507(2):2448–2467
- Matzner CD, McKee CF. 1999. ApJ 526(2):L109–L112
- McKee CF, Ostriker EC. 2007. ARA&A 45:565–687
- McKee CF, Tan JC. 2003. ApJ 585(2):850–871
- Moe M, Di Stefano R. 2016. ArXiv e-prints
- Myers PC. 2009. ApJ 706(2):1341–1352
- Naab T, Ostriker JP. 2017. ARA&A 55(1):59–109
- Neufeld DA, Wolfire MG. 2017. ApJ 845(2):163
- Osterbrock DE, Ferland GJ. 2006. Astrophysics of gaseous nebulae and active galactic nuclei
- Ostriker EC, Kim CG. 2022. ApJ 936(2):137
- Padoan P, Nordlund Å. 2002. ApJ 576:870–879
- Padovani M. 2023. On the origin of cosmic-ray ionisation in star-forming regions. In Physics and Chemistry of Star Formation: The Dynamical ISM Across Time and Spatial Scales
- Palla F, Stahler SW. 1991. ApJ 375:288
- Pelletier G, Pudritz RE. 1992. ApJ 394:117
- Penston MV. 1969. MNRAS 144:425
- Press WH, Schechter P. 1974. ApJ 187:425–438
- Price NM, Podsiadlowski P. 1995. MNRAS 273(4):1041–1068
- Rabatin B, Collins DC. 2022. MNRAS
- Rees MJ. 1976. MNRAS 176:483–486
- Robertson B, Goldreich P. 2012. ApJ 750:L31
- Rogers H, Pittard JM. 2013. MNRAS 431(2):1337–1351
- Rosen AL. 2022. ApJ 941(2):202
- Ruffert M. 1996. A&A 311:817–832
- Salpeter EE. 1955. ApJ 121:161
- Schmidt M. 1963. ApJ 137:758
- Sharda P, Krumholz MR. 2022. MNRAS 509(2):1959–1984
- Shu FH. 1977. ApJ 214:488–497
- Silk J. 1977. ApJ 214:152–160
- Silk J. 1995. ApJ 438:L41
- Smith RJ. 2020. ARA&A 58:577–615
- Sollima A. 2019. MNRAS 489(2):2377–2394
- Tanvir TS, Krumholz MR. 2023. arXiv e-prints :arXiv:2305.20039
- Teyssier R, Commerçon B. 2019. Frontiers in Astronomy and Space Sciences 6:51
- Tielens AGGM. 2005. The Physics and Chemistry of the Interstellar Medium
- van Dokkum PG, Conroy C. 2010. Nature 468:940–942
- Vaytet N, Haugbølle T. 2017. A&A 598:A116
- Vázquez-Semadeni E. 1994. ApJ 423:681
- Walch S, Naab T. 2015. MNRAS 451:2757–2771
- Weingartner JC, Draine BT. 2001. ApJS 134(2):263–281
- Whitworth AP, Jaffa SE. 2018. A&A 611:A20
- Wiesenfeld L, Goldsmith PF. 2014. ApJ 780(2):183
- Zentner AR. 2007. International Journal of Modern Physics D 16(5):763–815
- Zinnecker H. 1982. Annals of the New York Academy of Sciences 395:226–235
- Zinnecker H. 1984. MNRAS 210:43–56
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.