Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

Pressure-tuned many-body phases through $Γ$-K valleytronics in moiré bilayer WSe$_2$ (2404.07165v1)

Published 10 Apr 2024 in cond-mat.str-el, cond-mat.mes-hall, and cond-mat.mtrl-sci

Abstract: Recent experiments in twisted bilayer transition-metal dichalcogenides have revealed a variety of strongly correlated phenomena. To theoretically explore their origin, we combine here ab initio calculations with correlated model approaches to describe and study many-body effects in twisted bilayer WSe$_2$ under pressure. We find that the interlayer distance is a key factor for the electronic structure, as it tunes the relative energetic positions between the K and the $\Gamma$ valleys of the valence band maximum of the untwisted bilayer. As a result, applying uniaxial pressure to a twisted bilayer induces a charge-transfer from the K valley to the flat bands in the $\Gamma$ valley. Upon Wannierizing moir\'e bands from both valleys, we establish the relevant tight-binding model parameters and calculate the effective interaction strengths using the constrained random phase approximation. With this, we approximate the interacting pressure-doping phase diagram of WSe$_2$ moir\'e bilayers using self-consistent mean field theory. Our results establish twisted bilayer WSe$_2$ as a platform that allows the direct pressure-tuning of different correlated phases, ranging from Mott insulators, charge-valley-transfer insulators to Kondo lattice-like systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. K. F. Mak and J. Shan, Semiconductor moiré materials, Nature Nanotechnology 17, 686 (2022). 
  2. S. Ryee and T. O. Wehling, Switching between Mott-Hubbard and Hund Physics in Moiré Quantum Simulators, Nano Letters 23, 573 (2023). 
  3. M. Angeli and A. H. MacDonald, Γnormal-Γ\Gammaroman_Γ valley transition metal dichalcogenide moiré bands, Proceedings of the National Academy of Sciences 118, e2021826118 (2021). 
  4. See Online Supplementary Information..  
  5. J. Klimeš and A. Michaelides, Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory, The Journal of Chemical Physics 137, 120901 (2012). 
  6. O. A. Vydrov and T. Van Voorhis, Nonlocal van der Waals density functional: The simpler the better, The Journal of Chemical Physics 133, 244103 (2010). 
  7. R. Sabatini, T. Gorni, and S. d. Gironcoli, Nonlocal van der Waals density functional made simple and efficient, Physical Review B 87, 041108 (2013). 
  8. T. Westerhout, M. I. Katsnelson, and M. Rösner, Quantum dot-like plasmonic modes in twisted bilayer graphene supercells, 2D Mater. 9, 014004 (2021). 
  9. J. E. Hirsch, Two-dimensional Hubbard model: Numerical simulation study, Physical Review B 31, 4403 (1985). 
  10. J. Zaanen, G. A. Sawatzky, and J. W. Allen, Band gaps and electronic structure of transition-metal compounds, Physical Review Letters 55, 418 (1985). 
  11. P. Coleman, Introduction to Many-Body Physics (Cambridge University Press, 2015) ISBN 9780521864886. 
  12. L. Rademaker and J. Mydosh, Chapter 280 Quantum Critical Matter and Phase Transitions in Rare Earths and Actinides, Handbook on the Physics and Chemistry of Rare Earths 49, 293 (2016). 
  13. D. Huang and E. Kaxiras, Electric field tuning of band offsets in transition metal dichalcogenides, Physical Review B 94, 241303 (2016). 
  14. A. Ramasubramaniam, D. Naveh, and E. Towe, Tunable band gaps in bilayer transition-metal dichalcogenides, Physical Review B 84, 205325 (2011). 
  15. K. F. Mak, D. Xiao, and J. Shan, Light–valley interactions in 2D semiconductors, Nature Photonics 12, 451 (2018). 
  16. Q. Si and F. Steglich, Heavy Fermions and Quantum Phase Transitions, Science 329, 1161 (2010). 
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com