Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Comparison of decision trees with Local Interpretable Model-Agnostic Explanations (LIME) technique and multi-linear regression for explaining support vector regression model in terms of root mean square error (RMSE) values (2404.07046v1)

Published 10 Apr 2024 in cs.LG and cs.AI

Abstract: In this work the decision trees are used for explanation of support vector regression model. The decision trees act as a global technique as well as a local technique. They are compared against the popular technique of LIME which is a local explanatory technique and with multi linear regression. It is observed that decision trees give a lower RMSE value when fitted to support vector regression as compared to LIME in 87% of the runs over 5 datasets. The comparison of results is statistically significant. Multi linear regression also gives a lower RMSE value when fitted to support vector regression model as compared to LIME in 73% of the runs over 5 datasets but the comparison of results is not statistically significant. Also, when used as a local explanatory technique, decision trees give better performance than LIME and the comparison of results is statistically significant.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com