Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Peak Time-Windowed Risk Estimation of Stochastic Processes (2404.06961v2)

Published 10 Apr 2024 in math.OC, cs.SY, and eess.SY

Abstract: This paper develops a method to upper-bound extreme-values of time-windowed risks for stochastic processes. Examples of such risks include the maximum average or 90% quantile of the current along a transmission line in any 5-minute window. This work casts the time-windowed risk analysis problem as an infinite-dimensional linear program in occupation measures. In particular, we employ the coherent risk measures of the mean and the expected shortfall (conditional value at risk) to define the maximal time-windowed risk along trajectories. The infinite-dimensional linear program must then be truncated into finite-dimensional optimization problems, such as by using the moment-sum of squares hierarchy of semidefinite programs. The infinite-dimensional linear program will have the same optimal value as the original nonconvex risk estimation task under compactness and regularity assumptions, and the sequence of semidefinite programs will converge to the true value under additional properties of algebraic characterization. The scheme is demonstrated for risk analysis of example stochastic processes.

Summary

We haven't generated a summary for this paper yet.