Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsafe Probabilities and Risk Contours for Stochastic Processes using Convex Optimization (2401.00815v1)

Published 1 Jan 2024 in math.OC, cs.SY, and eess.SY

Abstract: This paper proposes an algorithm to calculate the maximal probability of unsafety with respect to trajectories of a stochastic process and a hazard set. The unsafe probability estimation problem is cast as a primal-dual pair of infinite-dimensional linear programs in occupation measures and continuous functions. This convex relaxation is nonconservative (to the true probability of unsafety) under compactness and regularity conditions in dynamics. The continuous-function linear program is linked to existing probability-certifying barrier certificates of safety. Risk contours for initial conditions of the stochastic process may be generated by suitably modifying the objective of the continuous-function program, forming an interpretable and visual representation of stochastic safety for test initial conditions. All infinite-dimensional linear programs are truncated to finite dimension by the Moment-Sum-of-Squares hierarchy of semidefinite programs. Unsafe-probability estimation and risk contours are generated for example stochastic processes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. M. Prandini, J. Hu, C. Cassandras, and J. Lygeros, “Stochastic reachability: Theory and numerical approximation,” Stochastic hybrid systems, Automation and Control Engineering Series, vol. 24, pp. 107–138, 2006.
  2. P. Mohajerin Esfahani, D. Chatterjee, and J. Lygeros, “The stochastic reach-avoid problem and set characterization for diffusions,” Automatica, vol. 70, pp. 43–56, 2016.
  3. N. Schmid and J. Lygeros, “Probabilistic reachability and invariance computation of stochastic systems using linear programming,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 11 229–11 234, 2023, 22nd IFAC World Congress.
  4. J. Miller, M. Tacchi, M. Sznaier, and A. Jasour, “Peak Value-at-Risk Estimation for Stochastic Processes using Occupation Measures,” 2023, arXiv:2303.16064.
  5. M. J. Cho and R. H. Stockbridge, “Linear Programming Formulation for Optimal Stopping Problems,” SIAM J. Control Optim., vol. 40, no. 6, pp. 1965–1982, 2002.
  6. A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems,” Automatica, vol. 44, no. 11, pp. 2724–2734, 2008.
  7. N. Kariotoglou, M. Kamgarpour, T. H. Summers, and J. Lygeros, “The Linear Programming Approach to Reach-Avoid Problems for Markov Decision Processes,” Journal of Artificial Intelligence Research, vol. 60, pp. 263–285, 2017.
  8. V. A. Huynh, S. Karaman, and E. Frazzoli, “An incremental sampling-based algorithm for stochastic optimal control,” in 2012 IEEE International Conference on Robotics and Automation.   IEEE, 2012, pp. 2865–2872.
  9. S. Prajna, A. Jadbabaie, and G. J. Pappas, “Stochastic Safety Verification Using Barrier Certificates,” in 2004 43rd IEEE conference on decision and control (CDC)(IEEE Cat. No. 04CH37601), vol. 1.   IEEE, 2004, pp. 929–934.
  10. A. Clark, “Control barrier functions for stochastic systems,” Automatica, vol. 130, p. 109688, 2021.
  11. A. Salamati, A. Lavaei, S. Soudjani, and M. Zamani, “Data-driven safety verification of stochastic systems via barrier certificates,” IFAC-PapersOnLine, vol. 54, no. 5, pp. 7–12, 2021.
  12. C. Santoyo, M. Dutreix, and S. Coogan, “A barrier function approach to finite-time stochastic system verification and control,” Automatica, vol. 125, p. 109439, 2021.
  13. J. Steinhardt and R. Tedrake, “Finite-time Regional Verification of Stochastic Nonlinear System,” The International Journal of Robotics Research, vol. 31, no. 7, pp. 901–923, 2012.
  14. B. Xue, N. Zhan, and M. Fränzle, “Reach-avoid analysis for stochastic differential equations,” arXiv:2208.10752, 2022.
  15. D. Drzajic, N. Kariotoglou, M. Kamgarpour, and J. Lygeros, “A Semidefinite Programming Approach to Control Synthesis for Stochastic Reach-Avoid Problems.” in ARCH@ CPSWeek, 2016, pp. 134–143.
  16. E. Ahbe, A. Iannelli, and R. S. Smith, “Region of attraction analysis of nonlinear stochastic systems using polynomial chaos expansion,” Automatica, vol. 122, p. 109187, 2020.
  17. A. Wang, A. Jasour, and B. C. Williams, “Non-Gaussian Chance-Constrained Trajectory Planning for Autonomous Vehicles Under Agent Uncertainty,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6041–6048, 2020.
  18. D. Henrion, M. Junca, and M. Velasco, “Moment-SOS hierarchy and exit time of stochastic processes,” arXiv preprint arXiv:2101.06009, 2021.
  19. X. Chen, S. Chen, and V. M. Preciado, “Safety Verification of Nonlinear Polynomial System via Occupation Measures,” in 2019 IEEE 58th Conference on Decision and Control (CDC), 2019, pp. 1159–1164.
  20. J. Miller, D. Henrion, and M. Sznaier, “Peak Estimation Recovery and Safety Analysis,” IEEE Control Systems Letters, vol. 5, no. 6, pp. 1982–1987, 2021.
  21. J. Miller and M. Sznaier, “Bounding the Distance to Unsafe Sets with Convex Optimization,” IEEE Transactions on Automatic Control, pp. 1–15, 2023.
  22. ——, “Quantifying the Safety of Trajectories using Peak-Minimizing Control,” 2023, arXiv:2303.11896.
  23. C. Sloth and R. Wisniewski, “Safety Analysis of Stochastic Dynamical Systems,” IFAC-PapersOnLine, vol. 48, no. 27, pp. 62–67, 2015, analysis and Design of Hybrid Systems ADHS.
  24. A. M. Jasour and B. C. Williams, “Risk Contours Map for Risk Bounded Motion Planning under Perception Uncertainties,” in Robotics: Science and Systems, 2019.
  25. D. Hilbert, “Über die Darstellung definiter Formen als Summe von Formenquadraten,” Mathematische Annalen, vol. 32, no. 3, pp. 342–350, 1888.
  26. G. Blekherman, “There are Significantly More Nonnegative Polynomials than Sums of Squares,” Israel Journal of Mathematics, vol. 153, no. 1, pp. 355–380, 2006.
  27. M.-D. Choi, T. Y. Lam, and B. Reznick, “Sums of squares of real polynomials,” in Proceedings of Symposia in Pure mathematics, vol. 58.   American Mathematical Society, 1995, pp. 103–126.
  28. J. Cimprič, M. Marshall, and T. Netzer, “Closures of quadratic modules,” Israel Journal of Mathematics, vol. 183, no. 1, pp. 445–474, 2011.
  29. M. Putinar, “Positive Polynomials on Compact Semi-algebraic Sets,” Indiana University Mathematics Journal, vol. 42, no. 3, pp. 969–984, 1993.
  30. J. Nie and M. Schweighofer, “On the complexity of Putinar’s Positivstellensatz,” Journal of Complexity, vol. 23, no. 1, pp. 135–150, 2007.
  31. D. Henrion, J. B. Lasserre, and C. Savorgnan, “Approximate Volume and Integration for Basic Semialgebraic Sets,” SIAM review, vol. 51, no. 4, pp. 722–743, 2009.
  32. S. Prajna, A. Jadbabaie, and G. J. Pappas, “A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates,” IEEE Transactions on Automatic Control, vol. 52, no. 8, pp. 1415–1428, 2007.
  33. M. Tacchi, “Convergence of Lasserre’s hierarchy: the general case,” Optimization Letters, vol. 16, no. 3, pp. 1015–1033, 2022.
  34. J. Miller, T. Dai, and M. Sznaier, “Data-Driven Superstabilizing Control of Error-in-Variables Discrete-Time Linear Systems,” in 2022 61st IEEE Conference on Decision and Control (CDC), 2022, pp. 4924–4929.
  35. J. Lofberg, “YALMIP : a toolbox for modeling and optimization in MATLAB,” in ICRA (IEEE Cat. No.04CH37508), 2004, pp. 284–289.
  36. M. Tacchi, “Moment-sos hierarchy for large scale set approximation. application to power systems transient stability analysis,” Ph.D. dissertation, Toulouse, INSA, 2021.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com