Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Creative and geometric times in physics, mathematics, logic, and philosophy (2404.06566v1)

Published 9 Apr 2024 in physics.hist-ph and quant-ph

Abstract: We propose a distinction between two different concepts of time that play a role in physics: geometric time and creative time. The former is the time of deterministic physics and merely parametrizes a given evolution. The latter is instead characterized by real change, i.e. novel information that gets created when a non-necessary event becomes determined in a fundamentally indeterministic physics. This allows us to give a naturalistic characterization of the present as the moment that separates the potential future from the determined past. We discuss how these two concepts find natural applications in classical and intuitionistic mathematics, respectively, and in classical and multivalued tensed logic, as well as how they relate to the well-known A- and B-theories in the philosophy of time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. L. Smolin, Time reborn: From the crisis in physics to the future of the universe (Penguin, 2013).
  2. I. Prigogine, The end of certainty (Simon and Schuster, 1997).
  3. F. Del Santo and N. Gisin, Physics without determinism: Alternative interpretations of classical physics, Physical Review A 100, 062107 (2019).
  4. F. Del Santo and N. Gisin, Potentiality realism: a realistic and indeterministic physics based on propensities, Euro Jnl Phil Sci 13 (2023).
  5. H. Bergson, Le possible et le réel, in La pensée et le mouvant: Essais et conférences (1903-1923) (Alicia Éditions, 2021) pp. 99–116.
  6. J. Norton, Causation as folk science, Philosophia Mathematica 3, 1 (2003).
  7. G. L. Eyink and D. Bandak, Renormalization group approach to spontaneous stochasticity, Physical Review Research 2, 043161 (2020).
  8. B. Drossel, On the relation between the second law of thermodynamics and classical and quantum mechanics, in Why More Is Different: Philosophical Issues in Condensed Matter Physics and Complex Systems (Springer, 2015) pp. 41–54.
  9. N. Gisin, Real numbers are the hidden variables of classical mechanics, Quantum Studies: Mathematics and Foundations 7, 197 (2020a).
  10. N. Gisin, Indeterminism in physics, classical chaos and bohmian mechanics: Are real numbers really real?, Erkenntnis 86, 1469 (2021).
  11. C. Calosi and J. Wilson, Quantum metaphysical indeterminacy, Philosophical Studies 176, 2599 (2019).
  12. M. E. Miller, Worldly imprecision, Philosophical Studies 178, 2895 (2021).
  13. N. Gisin, Time really passes, science can’t deny that, in Time in Physics, edited by R. Renner and S. Stupar (Springer International Publishing, Cham, 2017) pp. 1–15.
  14. F. Del Santo and N. Gisin, The relativity of indeterminacy, Entropy 23, 1326 (2021).
  15. F. D. Santo and N. Gisin, The open past in an indeterministic physics, Foundations of Physics 53, 4 (2023).
  16. L. P. Horwitz and C. Piron, Relativistic dynamics, Helvetica Physica Acta 46, 316 (1973).
  17. G. F. Ellis, On the flow of time, arXiv preprint arXiv:0812.0240  (2008).
  18. Y. Dolev, Physics’ silence on time, European Journal for Philosophy of Science 8, 455 (2018).
  19. N. Gisin, Mathematical languages shape our understanding of time in physics, Nature Physics 16, 114 (2020b).
  20. P. Fletcher, A constructivist perspective on physics, Philosophia Mathematica 10, 26 (2002).
  21. S. Plouffe, A formula for the nthsuperscript𝑛thn^{\rm th}italic_n start_POSTSUPERSCRIPT roman_th end_POSTSUPERSCRIPT decimal digit or binary of π𝜋\piitalic_π and powers of π𝜋\piitalic_π (2022), arXiv:2201.12601 [math.NT] .
  22. D. Bailey, P. Borwein, and S. Plouffe, On the rapid computation of various polylogarithmic constants, Mathematics of Computation 66, 903 (1997).
  23. C. J. Posy, Mathematical intuitionism (Cambridge University Press, 2020).
  24. M. van Atten, Dummett’s objection to the ontological route to intuitionistic logic: a rejoinder, Inquiry 65, 725 (2022).
  25. J. Łukasiewicz, On determinism, The Polish Review , 47 (1968).
  26. S. C. Kleene, Introduction to Metamathematics (P. Noordhoff N.V., Groningen, 1952).
  27. K. Godel, Zum intuitionistischen aussagenkalkul, Anzeiger Akademie der Wissenschaften Wien, mathematisch-naturwissenschaftliche Klasse 69, 65 (1932).
  28. B. Le Bihan, Un espace-temps de contingences (PhD Thesis: Laboratoire Philosophie des normes (Rennes), 2015).
  29. B. Le Bihan, Qu’est-ce que le temps? (VRIN, 2019).
  30. J. McTaggart, The nature of existence, Vol. V (CUP, 1927).
  31. D. Deasy, A (limited) defence of priorianism, Inquiry 66, 2037 (2023).
  32. N. Markosian, A defense of presentism, Oxford studies in metaphysics 1, 47 (2004).
  33. A. Prior, Papers on time and tense (Oxford University Press, USA, 1968).
  34. R. P. Cameron, The moving spotlight: An essay on time and ontology (OUP Oxford, 2015).
  35. G. A. Forbes, The growing block’s past problems, Philosophical Studies 173, 699 (2016).
  36. E. Barnes and R. Cameron, The open future: Bivalence, determinism and ontology, Philosophical Studies 146, 291 (2009).
  37. H. Reichenbach, Les Fondements Logiques de la Mécanique des Quanta (Annales de l’Institut Henri Poincare 13, 1953).
  38. S. McCall, Objective time flow, Philosophy of science 43, 337 (1976).
  39. G. E. M. Anscombe, Causality and determination: An inaugural lecture (CUP Archive, 1971).
  40. H. Reichenbach, The philosophy of space and time (Courier Corporation, 2012).
  41. C. J. Rhodes, Muon tomography: looking inside dangerous places, Science progress 98, 291 (2015).
  42. F. Arntzenius, Indeterminism and the direction of time, Topoi 14, 67 (1995).
  43. C. Mariani and G. Torrengo, The indeterminate present and the open future, Synthese 199, 3923 (2021).
  44. D. Z. Albert, Time and chance (2003).
  45. B. Drossel, Ten reasons why a thermalized system cannot be described by a many-particle wave function, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 58, 12 (2017).
  46. B. Drossel, The passage of time and top-down causation, in Proceedings of the MG16 Meeting on General Relativity Online; 5–10 July 2021 (World Scientific, 2023) pp. 3631–3645.
  47. G. F. Ellis and B. Drossel, Emergence of time, Foundations of Physics 50, 161 (2020).
  48. G. F. Ellis, Physical time and human time, Foundations of Physics 54, 1 (2024).
  49. T. Maudlin, The metaphysics within physics (Oxford University Press, 2007).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 68 likes.