Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EVLearn: Extending the CityLearn Framework with Electric Vehicle Simulation (2404.06521v1)

Published 8 Apr 2024 in cs.MA, cs.SY, and eess.SY

Abstract: Intelligent energy management strategies, such as Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) emerge as a potential solution to the Electric Vehicles' (EVs) integration into the energy grid. These strategies promise enhanced grid resilience and economic benefits for both vehicle owners and grid operators. Despite the announced prospective, the adoption of these strategies is still hindered by an array of operational problems. Key among these is the lack of a simulation platform that allows to validate and refine V2G and G2V strategies. Including the development, training, and testing in the context of Energy Communities (ECs) incorporating multiple flexible energy assets. Addressing this gap, first we introduce the EVLearn, a simulation module for researching in both V2G and G2V energy management strategies, that models EVs, their charging infrastructure and associated energy flexibility dynamics; second, this paper integrates EVLearn with the existing CityLearn framework, providing V2G and G2V simulation capabilities into the study of broader energy management strategies. Results validated EVLearn and its integration into CityLearn, where the impact of these strategies is highlighted through a comparative simulation scenario.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com