Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Simulation Tool for V2G Enabled Demand Response Based on Model Predictive Control (2405.11963v1)

Published 20 May 2024 in eess.SY and cs.SY

Abstract: Integrating electric vehicles (EVs) into the power grid can revolutionize energy management strategies, offering both challenges and opportunities for creating a more sustainable and resilient grid. In this context, model predictive control (MPC) emerges as a powerful tool for addressing the complexities of Grid-to-vehicle (G2V) and vehicle-to-grid (V2G) enabled demand response management. By leveraging advanced optimization techniques, MPC algorithms can anticipate future grid conditions and dynamically adjust EV charging and discharging schedules to balance supply and demand while minimizing operational costs and maximizing flexibility. However, no standard tools exist to evaluate novel energy management strategies based on MPC approaches. Our research focuses on harnessing the potential of MPC in G2V and V2G applications, by providing a simulation tool that allows to maximize EV flexibility and support demand response initiatives while mitigating the impact on EV battery health. In this paper, we propose an open-source MPC controller for G2V and V2G-enabled demand response management. The proposed approach is capable of tackling the uncertainties inherent in demand response operations. Through extensive simulation and analysis, we demonstrate the efficacy of our approach in maximizing the benefits of G2V and V2G while assessing the impact on the longevity and reliability of EV batteries. Specifically, our controller enables Charge Point Operators (CPOs) to optimize EV charging and discharging schedules in real-time, taking into account fluctuating energy prices, grid constraints, and EV user preferences.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. K. M. Tan, V. K. Ramachandaramurthy, and J. Y. Yong, “Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques,” Renewable & Sustainable Energy Reviews, vol. 53, pp. 720–732, 2016.
  2. A. Dubey and S. Santoso, “Electric vehicle charging on residential distribution systems: Impacts and mitigations,” IEEE Access, vol. 3, pp. 1871–1893, 2015.
  3. L. Shi, T. Lv, and Y. Wang, “Vehicle-to-grid service development logic and management formulation,” Journal of Modern Power Systems and Clean Energy, vol. 7, no. 4, pp. 935–947, 2019.
  4. A. Allehyani, A. Ajabnoor, and M. Alharbi, “Chapter 14 - demand response scheme for electric vehicles charging in smart power systems with 100% of renewable energy,” in Power Systems Operation with 100% Renewable Energy Sources, S. Chenniappan, S. Padmanaban, and S. Palanisamy, Eds.   Elsevier, 2024, pp. 247–268.
  5. S. H. Shamsdin, A. Seifi, M. Rostami-Shahrbabaki, and B. Rahrovi, “Plug-in electric vehicle optimization and management charging in a smart parking lot,” 2019 IEEE Texas Power and Energy Conference, TPEC 2019, 3 2019.
  6. K. Schulte and J. Haubrock, “Linear programming to increase the directly used photovoltaic power for charging several electric vehicles,” 2021 IEEE Madrid PowerTech, PowerTech 2021 - Conference Proceedings, 6 2021.
  7. I. Sengor, O. Erdinc, B. Yener, A. Tascikaraoglu, and J. P. Catalao, “Optimal energy management of EV parking lots under peak load reduction based DR programs considering uncertainty,” IEEE Transactions on Sustainable Energy, vol. 10, no. 3, pp. 1034–1043, 7 2019.
  8. P. Meenakumar, M. Aunedi, and G. Strbac, “Optimal Business Case for Provision of Grid Services through EVs with V2G Capabilities,” 2020 15th International Conference on Ecological Vehicles and Renewable Energies, EVER 2020, 9 2020.
  9. F. Giordano, C. Diaz-Londono, and G. Gruosso, “Comprehensive aggregator methodology for evs in v2g operations and electricity markets,” IEEE Open Journal of Vehicular Technology, vol. 4, pp. 809–819, 2023.
  10. X. Jiang, S. Wang, Q. Zhao, and X. Wang, “Optimized dispatching method for flexibility improvement of ac-mtdc distribution systems considering aggregated electric vehicles,” Journal of Modern Power Systems and Clean Energy, vol. 11, no. 6, pp. 1857–1867, 2023.
  11. H. Patil and V. N. Kalkhambkar, “Grid integration of electric vehicles for economic benefits: A review,” Journal of Modern Power Systems and Clean Energy, vol. 9, no. 1, pp. 13–26, 2021.
  12. J. S. Giraldo, N. B. Arias, P. P. Vergara, M. Vlasiou, G. Hoogsteen, and J. L. Hurink, “Estimating risk-aware flexibility areas for electric vehicle charging pools via ac stochastic optimal power flow,” Journal of Modern Power Systems and Clean Energy, vol. 11, no. 4, pp. 1247–1256, 2023.
  13. C. Diaz-Londono, G. Fambri, P. Maffezzoni, and G. Gruosso, “Enhanced ev charging algorithm considering data-driven workplace chargers categorization with multiple vehicle types,” eTransportation, vol. 20, p. 100326, 2024.
  14. M. Tahmasebi, A. Ghadiri, M. Haghifam, and S. Miri-Larimi, “Mpc-based approach for online coordination of evs considering ev usage uncertainty,” International Journal of Electrical Power & Energy Systems, vol. 130, p. 106931, 2021.
  15. Z. Ji, X. Huang, C. Xu, and H. Sun, “Accelerated model predictive control for electric vehicle integrated microgrid energy management: A hybrid robust and stochastic approach,” Energies, vol. 9, no. 11, 2016.
  16. Y. Zhou, A. Ravey, and M.-C. Péra, “Real-time cost-minimization power-allocating strategy via model predictive control for fuel cell hybrid electric vehicles,” Energy Conversion and Management, vol. 229, p. 113721, 2021.
  17. E. Cording and J. Thakur, “Fleetrl: Realistic reinforcement learning environments for commercial vehicle fleets,” SoftwareX, vol. 26, p. 101671, May 2024.
  18. G. Karatzinis, C. Korkas, M. Terzopoulos, C. Tsaknakis, A. Stefanopoulou, I. Michailidis, and E. Kosmatopoulos, “Chargym: An EV Charging Station Model for Controller Benchmarking,” in Artificial Intelligence Applications and Innovations.   Springer International Publishing, 2022, pp. 241–252.
  19. C. Yeh, V. Li, R. Datta, J. Arroyo, N. Christianson, C. Zhang, Y. Chen, M. M. Hosseini, A. Golmohammadi, Y. Shi, Y. Yue, and A. Wierman, “SustainGym: Reinforcement Learning Environments for Sustainable Energy Systems,” Nov. 2023.
  20. T. Morstyn, K. A. Collett, A. Vijay, M. Deakin, S. Wheeler, S. M. Bhagavathy, F. Fele, and M. D. McCulloch, “Open: An open-source platform for developing smart local energy system applications,” Applied Energy, vol. 275, p. 115397, 2020.
  21. S. Orfanoudakis, C. Diaz-Londono, Y. E. Yılmaz, P. Palensky, and P. P. Vergara, “Ev2gym: A flexible v2g simulator for ev smart charging research and benchmarking,” arXiv Preprints, 2024.
  22. “Elaadnl open datasets for electric mobility research — update april 2020,” https://platform.elaad.io/analyses/ElaadNL_opendata.php, accessed: [23/11/2023].
  23. “Pecan street data portal,” https://www.pecanstreet.org/dataport/.
  24. S. Pfenninger and I. Staffell, “Long-term patterns of european PV output using 30 years of validated hourly reanalysis and satellite data,” Energy, vol. 114, pp. 1251–1265, 2016.
  25. C. F. Lee, K. Bjurek, V. Hagman, Y. Li, and C. Zou, “Vehicle-to-grid optimization considering battery aging,” 22nd IFAC World Congress, vol. 56, no. 2, pp. 6624–6629, 2023.
  26. C. Diaz-Londono, L. Colangelo, F. Ruiz, D. Patino, C. Novara, and G. Chicco, “Optimal strategy to exploit the flexibility of an electric vehicle charging station,” Energies, vol. 12, no. 20, 2019.
  27. “SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler J1772 201710,” SAE International, Standard, Oct. 2017.
  28. “Entso-e transparency platform,” https://transparency.entsoe.eu/.

Summary

We haven't generated a summary for this paper yet.