Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Causal third-order viscous hydrodynamics within relaxation-time approximation (2404.06381v2)

Published 9 Apr 2024 in hep-ph

Abstract: In the present work, we derive a linearly stable and causal theory of relativistic third-order viscous hydrodynamics from the Boltzmann equation with relaxation-time approximation. We employ viscous correction to the distribution function obtained using a Chapman-Enskog like iterative solution of the Boltzmann equation. Our derivation highlights the necessity of incorporating a new dynamical degree of freedom, specifically an irreducible tensors of rank three, within this framework. This differs from the recent formulation of causal third-order theory from the method of moments which requires two dynamical degrees of freedom: an irreducible third-rank and a fourth-rank tensor. We verify the linear stability and causality of the proposed formulation by examining perturbations around a global equilibrium state.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. J. C. Collins and M. J. Perry, Superdense Matter: Neutrons Or Asymptotically Free Quarks?, Phys. Rev. Lett. 34, 1353 (1975).
  2. E. V. Shuryak, Quark-Gluon Plasma and Hadronic Production of Leptons, Photons and Psions, Phys. Lett. B 78, 150 (1978).
  3. J. I. Kapusta, Quantum Chromodynamics at High Temperature, Nucl. Phys. B 148, 461 (1979).
  4. H.-T. Elze and U. W. Heinz, Quark - Gluon Transport Theory, Phys. Rept. 183, 81 (1989).
  5. D. H. Rischke, The Quark gluon plasma in equilibrium, Prog. Part. Nucl. Phys. 52, 197 (2004), arXiv:nucl-th/0305030 .
  6. L. P. Csernai, J. I. Kapusta, and L. D. McLerran, On the Strongly-Interacting Low-Viscosity Matter Created in Relativistic Nuclear Collisions, Phys. Rev. Lett. 97, 152303 (2006), arXiv:nucl-th/0604032 .
  7. C. Gale, S. Jeon, and B. Schenke, Hydrodynamic Modeling of Heavy-Ion Collisions, Int. J. Mod. Phys. A 28, 1340011 (2013), arXiv:1301.5893 [nucl-th] .
  8. U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013), arXiv:1301.2826 [nucl-th] .
  9. M. P. Heller and M. Spalinski, Hydrodynamics Beyond the Gradient Expansion: Resurgence and Resummation, Phys. Rev. Lett. 115, 072501 (2015), arXiv:1503.07514 [hep-th] .
  10. P. Romatschke, Relativistic Fluid Dynamics Far From Local Equilibrium, Phys. Rev. Lett. 120, 012301 (2018), arXiv:1704.08699 [hep-th] .
  11. W. Florkowski, M. P. Heller, and M. Spalinski, New theories of relativistic hydrodynamics in the LHC era, Rept. Prog. Phys. 81, 046001 (2018), arXiv:1707.02282 [hep-ph] .
  12. P. Romatschke and U. Romatschke, Relativistic Fluid Dynamics In and Out of Equilibrium, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2019) arXiv:1712.05815 [nucl-th] .
  13. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, Oxford, 1987).
  14. C. Eckart, The Thermodynamics of Irreversible Processes. 1. The Simple Fluid, Phys. Rev. 58, 267 (1940).
  15. W. Israel and J. M. Stewart, Transient relativistic thermodynamics and kinetic theory, Annals Phys. 118, 341 (1979).
  16. P. Huovinen and D. Molnar, The Applicability of causal dissipative hydrodynamics to relativistic heavy ion collisions, Phys. Rev. C 79, 014906 (2009), arXiv:0808.0953 [nucl-th] .
  17. A. Muronga, Causal theories of dissipative relativistic fluid dynamics for nuclear collisions, Phys. Rev. C 69, 034903 (2004), arXiv:nucl-th/0309055 .
  18. M. Martinez and M. Strickland, Constraining relativistic viscous hydrodynamical evolution, Phys. Rev. C 79, 044903 (2009), arXiv:0902.3834 [hep-ph] .
  19. K. Rajagopal and N. Tripuraneni, Bulk Viscosity and Cavitation in Boost-Invariant Hydrodynamic Expansion, JHEP 03, 018, arXiv:0908.1785 [hep-ph] .
  20. A. El, Z. Xu, and C. Greiner, Third-order relativistic dissipative hydrodynamics, Phys. Rev. C 81, 041901 (2010), arXiv:0907.4500 [hep-ph] .
  21. A. Jaiswal, Relativistic dissipative hydrodynamics from kinetic theory with relaxation time approximation, Phys. Rev. C 87, 051901 (2013a), arXiv:1302.6311 [nucl-th] .
  22. M. Younus and A. Muronga, Third order viscous hydrodynamics from the entropy four current, Phys. Rev. C 102, 034902 (2020), arXiv:1910.11735 [nucl-th] .
  23. A. Jaiswal, Relativistic third-order dissipative fluid dynamics from kinetic theory, Phys. Rev. C 88, 021903 (2013b), arXiv:1305.3480 [nucl-th] .
  24. S. Grozdanov and N. Kaplis, Constructing higher-order hydrodynamics: The third order, Phys. Rev. D 93, 066012 (2016), arXiv:1507.02461 [hep-th] .
  25. C. V. Brito and G. S. Denicol, Linear causality and stability of third-order relativistic dissipative fluid dynamics, Phys. Rev. D 105, 096026 (2022), arXiv:2107.10319 [nucl-th] .
  26. C. V. P. de Brito and G. S. Denicol, Third-order relativistic dissipative fluid dynamics from the method of moments, Phys. Rev. D 108, 096020 (2023), arXiv:2302.09097 [nucl-th] .
  27. D. Everett, C. Chattopadhyay, and U. Heinz, Maximum entropy kinetic matching conditions for heavy-ion collisions, Phys. Rev. C 103, 064902 (2021), arXiv:2101.01130 [hep-ph] .
  28. C. Chattopadhyay, U. Heinz, and T. Schaefer, Fluid dynamics from the Boltzmann equation using a maximum entropy distribution, Phys. Rev. C 108, 034907 (2023), arXiv:2307.10769 [hep-ph] .
  29. J. L. Anderson and H. R. Witting, A relativistic relaxation-time model for the Boltzmann equation, Physica 74, 466 (1974).
  30. S. Chapman and T. G. Cowling, The Mathematical Theory of Non- Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, 1970).
  31. G. S. Denicol, T. Koide, and D. H. Rischke, Dissipative relativistic fluid dynamics: a new way to derive the equations of motion from kinetic theory, Phys. Rev. Lett. 105, 162501 (2010), arXiv:1004.5013 [nucl-th] .

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 3 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube