Probing the Berezinskii-Kosterlitz-Thouless vortex unbinding transition in two-dimensional superconductors using local noise magnetometry (2404.06147v1)
Abstract: The melting of quasi-long-range superconductivity in two spatial dimensions occurs through the proliferation and unbinding of vortex-antivortex pairs -- a phenomenon known as the Berezinskii-Kosterlitz-Thouless (BKT) transition. Although signatures of this transition have been observed in bulk measurements, these experiments are often complicated, ambiguous, and unable to resolve the rich physics of the vortex unbinding transition. Here we show that local noise magnetometry is a sensitive, noninvasive probe that can provide direct information about the scale-dependent vortex dynamics. In particular, by resolving the distance and temperature dependence of the magnetic noise, it may be possible to experimentally study the renormalization group flow equations of the vortex gas and track the onset of vortex unbinding in situ. Specifically, we predict i) a nonmonotonic dependence of the noise on temperature and ii) the local noise is almost independent of the sample-probe distance at the BKT transition. We also show that noise magnetometry can distinguish Gaussian superconducting order-parameter fluctuations from topological vortex fluctuations and can detect the emergence of unbound vortices. The weak distance dependence at the BKT transition can also be used to distinguish it from quasiparticle background noise. Our predictions may be within experimental reach for a number of unconventional superconductors.
- N. D. Mermin and H. Wagner, Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models, Phys. Rev. Lett. 17, 1133 (1966).
- P. C. Hohenberg, Existence of Long-Range Order in One and Two Dimensions, Phys. Rev. 158, 383 (1967).
- S. Coleman, There Are No Goldstone Bosons in Two Dimensions, Comm. Math. Phys. 31, 259 (1973).
- V. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. Classical systems, J.E.T.P. 32, 493 (1971).
- J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, Journal of Physics C: Solid State Physics 6, 1181 (1973).
- J. M. Kosterlitz, Kosterlitz–Thouless physics: a review of key issues, Reports on Progress in Physics 79, 026001 (2016).
- H.-J. Mikeska and H. Schmidt, Phase transition without long-range order in two dimensions, Journal of Low Temperature Physics 2, 371 (1970).
- D. R. Nelson and J. M. Kosterlitz, Universal Jump in the Superfluid Density of Two-Dimensional Superfluids, Physical Review Letters 39, 1201 (1977).
- J. M. Kosterlitz, The critical properties of the two-dimensional xy model, Journal of Physics C: Solid State Physics 7, 1046 (1974).
- Z. Hadzibabic and J. Dalibard, BKT Physics with Two-Dimensional Atomic Gases, in 40 Years of Berezinskii-Kosterlitz-Thouless Theory (2013) p. 297–323.
- M. R. Beasley, J. E. Mooij, and T. P. Orlando, Possibility of Vortex-Antivortex Pair Dissociation in Two-Dimensional Superconductors, Physical Review Letters 42, 1165 (1979).
- B. I. Halperin and D. R. Nelson, Resistive transition in superconducting films, Journal of Low Temperature Physics 36, 599 (1979).
- S. Doniach and B. A. Huberman, Topological Excitations in Two-Dimensional Superconductors, Physical Review Letters 42, 1169 (1979).
- J. Pearl, CURRENT DISTRIBUTION IN SUPERCONDUCTING FILMS CARRYING QUANTIZED FLUXOIDS, Applied Physics Letters 5, 65 (1964).
- B. J. Kim and P. Minnhagen, Flux-noise spectra around the Kosterlitz-Thouless transition for two-dimensional superconductors, Physical Review B 60, 6834 (1999), cond-mat/9902148 .
- J. Houlrik, A. Jonsson, and P. Minnhagen, Flux noise and vortex dissipation for two-dimensional superconductors, Physical Review B 50, 3953 (1994).
- S. E. Korshunov, Fluctuation-dissipation theorem and flux noise in overdamped Josephson-junction arrays, Physical Review B 66, 104513 (2002), cond-mat/0203531 .
- L. Benfatto, C. Castellani, and T. Giamarchi, Doping dependence of the vortex-core energy in bilayer films of cuprates, Physical Review B 77, 100506 (2008), 0712.0936 .
- L. Benfatto, C. Castellani, and T. Giamarchi, Broadening of the Berezinskii-Kosterlitz-Thouless superconducting transition by inhomogeneity and finite-size effects, Physical Review B 80, 214506 (2009), 0909.0479 .
- A. Larkin and A. Varlamov, Theory of Fluctuations in Superconductors (2005).
- At finite frequency there is an additional cutoff scale at ℓω∼D/ωsimilar-tosubscriptℓ𝜔𝐷𝜔\ell_{\omega}\sim\sqrt{D/\omega}roman_ℓ start_POSTSUBSCRIPT italic_ω end_POSTSUBSCRIPT ∼ square-root start_ARG italic_D / italic_ω end_ARG above which the frequency dependence of vortex diffusion becomes relevant.
- F. Casola, T. v. d. Sar, and A. Yacoby, Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond, Nature Reviews Materials 3, 17088 (2018), 1804.08742 .
- E. J. König, P. Coleman, and A. M. Tsvelik, Spin magnetometry as a probe of stripe superconductivity in twisted bilayer graphene, arXiv 10.48550/arxiv.2006.10684 (2020), 2006.10684 .
- S. Zhang and Y. Tserkovnyak, Flavors of magnetic noise in quantum materials, Physical Review B 106, L081122 (2022), 2108.07305 .
- S. Chatterjee, J. F. Rodriguez-Nieva, and E. Demler, Diagnosing phases of magnetic insulators via noise magnetometry with spin qubits, Physical Review B 99, 104425 (2019), 1810.04183 .
- J. Bardeen and M. J. Stephen, Theory of the Motion of Vortices in Superconductors, Physical Review 140, A1197 (1965).
- A. P. Young and T. Bohr, Crossover in the two-dimensional Coulomb gas, Journal of Physics C: Solid State Physics 14, 2713 (2000).
- V. Ambegaokar and S. Teitel, Dynamics of vortex pairs in superfluid films, Physical Review B 19, 1667 (1979).
- A. M. Clogston, Upper Limit for the Critical Field in Hard Superconductors, Physical Review Letters 9, 266 (1962).
- B. S. Chandrasekhar, A NOTE ON THE MAXIMUM CRITICAL FIELD OF HIGH-FIELD SUPERCONDUCTORS, Applied Physics Letters 1, 7 (1962).
- D. C. Mattis and J. Bardeen, Theory of the Anomalous Skin Effect in Normal and Superconducting Metals, Phys. Rev. 111, 412 (1958).
- S. B. Chung and S. K. Kim, Berezinskii-Kosterlitz-Thouless transition transport in spin-triplet superconductor, SciPost Physics Core 5, 003 (2022).
- M. P. A. Fisher, Quantum phase transitions in disordered two-dimensional superconductors, Physical Review Letters 65, 923 (1990).
- R. Fazio and H. v. d. Zant, Quantum phase transitions and vortex dynamics in superconducting networks, Physics Reports 355, 235 (2001), cond-mat/0011152 .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.