Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Condition Monitoring with Incomplete Data: An Integrated Variational Autoencoder and Distance Metric Framework (2404.05891v2)

Published 8 Apr 2024 in eess.SP, cs.AI, and cs.LG

Abstract: Condition monitoring of industrial systems is crucial for ensuring safety and maintenance planning, yet notable challenges arise in real-world settings due to the limited or non-existent availability of fault samples. This paper introduces an innovative solution to this problem by proposing a new method for fault detection and condition monitoring for unseen data. Adopting an approach inspired by zero-shot learning, our method can identify faults and assign a relative health index to various operational conditions. Typically, we have plenty of data on normal operations, some data on compromised conditions, and very few (if any) samples of severe faults. We use a variational autoencoder to capture the probabilistic distribution of previously seen and new unseen conditions. The health status is determined by comparing each sample's deviation from a normal operation reference distribution in the latent space. Faults are detected by establishing a threshold for the health indexes, allowing the model to identify severe, unseen faults with high accuracy, even amidst noise. We validate our approach using the run-to-failure IMS-bearing dataset and compare it with other methods. The health indexes generated by our model closely match the established descriptive model of bearing wear, attesting to the robustness and reliability of our method. These findings highlight the potential of our methodology in augmenting fault detection capabilities within industrial domains, thereby contributing to heightened safety protocols and optimized maintenance practices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. R. Liu, B. Yang, E. Zio, and X. Chen, “Artificial intelligence for fault diagnosis of rotating machinery: A review,” Mechanical Systems and Signal Processing, vol. 108, pp. 33–47, 2018.
  2. M. Ahang, T. Charter, O. Ogunfowora, M. Khadivi, M. Abbasi, and H. Najjaran, “Intelligent condition monitoring of industrial plants: An overview of methodologies and uncertainty management strategies,” arXiv preprint arXiv:2401.10266, 2024.
  3. M. Ahang, M. Jalayer, A. Shojaeinasab, O. Ogunfowora, T. Charter, and H. Najjaran, “Synthesizing rolling bearing fault samples in new conditions: A framework based on a modified cgan,” Sensors, vol. 22, no. 14, p. 5413, 2022.
  4. Boston, MA: Springer US, 2009.
  5. D. Berthelot, R. Roelofs, K. Sohn, N. Carlini, and A. Kurakin, “Adamatch: A unified approach to semi-supervised learning and domain adaptation,” arXiv preprint arXiv:2106.04732, 2021.
  6. Y. Shi, Z. Lan, W. Liu, and W. Bi, “Extending semi-supervised learning methods for inductive transfer learning,” in 2009 Ninth IEEE international conference on data mining, pp. 483–492, IEEE, 2009.
  7. S. de Vries and D. Thierens, “A reliable ensemble based approach to semi-supervised learning,” Knowledge-Based Systems, vol. 215, p. 106738, 2021.
  8. S. Khan, S. Tsutsumi, T. Yairi, and S. Nakasuka, “Robustness of ai-based prognostic and systems health management,” Annual Reviews in Control, vol. 51, pp. 130–152, 2021.
  9. T. Hayashi, D. Cimr, F. Studnička, H. Fujita, D. Bušovský, and R. Cimler, “Patient deterioration detection using one-class classification via cluster period estimation subtask,” Information Sciences, vol. 657, p. 119975, 2024.
  10. J. Xu and K. Li, “Generative zero-shot learning compound fault diagnosis of bearings,” in 2021 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD), pp. 1–7, 2021.
  11. M. Zarchi and M. Shahgholi, “A novel information fusion approach using weighted neural networks for intelligent multi-class diagnostics of rotating machinery with unseen working conditions,” Journal of Vibration and Control, vol. 29, no. 23-24, pp. 5545–5562, 2023.
  12. Z. Chen, D. Zhou, T. Xia, and E. Pan, “Online unsupervised optimization framework for machine performance assessment based on distance metric learning,” Mechanical Systems and Signal Processing, vol. 206, p. 110883, 2024.
  13. I. El-Thalji and E. Jantunen, “A descriptive model of wear evolution in rolling bearings,” Engineering failure analysis, vol. 45, pp. 204–224, 2014.
  14. C. Lu, Z.-Y. Wang, W.-L. Qin, and J. Ma, “Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification,” Signal Processing, vol. 130, pp. 377–388, 2017.
  15. I. Higgins, L. Matthey, A. Pal, C. P. Burgess, X. Glorot, M. M. Botvinick, S. Mohamed, and A. Lerchner, “beta-vae: Learning basic visual concepts with a constrained variational framework.,” ICLR (Poster), vol. 3, 2017.
  16. H. Qiu, J. Lee, J. Lin, and G. Yu, “Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics,” Journal of sound and vibration, vol. 289, no. 4-5, pp. 1066–1090, 2006.
  17. H. Li, Y. Li, and H. Yu, “A novel health indicator based on cointegration for rolling bearings’ run-to-failure process,” Sensors, vol. 19, no. 9, p. 2151, 2019.
  18. S. Zhang, F. Ye, B. Wang, and T. G. Habetler, “Semi-supervised bearing fault diagnosis and classification using variational autoencoder-based deep generative models,” IEEE Sensors Journal, vol. 21, no. 5, pp. 6476–6486, 2020.
  19. X. Chen, B. Zhang, and D. Gao, “Bearing fault diagnosis base on multi-scale cnn and lstm model,” Journal of Intelligent Manufacturing, vol. 32, no. 4, pp. 971–987, 2021.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com