Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Informative Health Indicators Through Unsupervised Contrastive Learning (2208.13288v3)

Published 28 Aug 2022 in cs.LG

Abstract: Monitoring the health of complex industrial assets is crucial for safe and efficient operations. Health indicators that provide quantitative real-time insights into the health status of industrial assets over time serve as valuable tools for e.g. fault detection or prognostics. This study proposes a novel, versatile and unsupervised approach to learn health indicators using contrastive learning, where the operational time serves as a proxy for degradation. To highlight its versatility, the approach is evaluated on two tasks and case studies with different characteristics: wear assessment of milling machines and fault detection of railway wheels. Our results show that the proposed methodology effectively learns a health indicator that follows the wear of milling machines (0.97 correlation on average) and is suitable for fault detection in railway wheels (88.7% balanced accuracy). The conducted experiments demonstrate the versatility of the approach for various systems and health conditions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.