Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Nonlinear chiral forms in the Sen formulation (2404.05380v2)

Published 8 Apr 2024 in hep-th

Abstract: The Sen formulation for chiral $(2p)$-form in $4p+2$ dimensions describes a system with two separate sectors, one is physical while the other is unphysical. Each contains a chiral form and a metric. In this paper, we focus on the cases where the self-duality condition for the unphysical sector is linear while for the physical sector can be nonlinear. We show the decoupling at the Hamiltonian and Lagrangian levels. The decoupling at the Hamiltonian level follows the idea in the literature. Then by an appropriate field redefinition of the corresponding first-order Lagrangian, the separation at the Lagrangian level follows. We derive the diffeomorphism of the theory in the case where the chiral form in the physical sector has nonlinear self-dual field strength and couples to external $(2p+1)$-form field. Explicit forms of Sen theories are also discussed. The Lagrangian for the quadratic theory is separated into two Henneaux-Teitelboim Lagrangians. We also discuss the method of generating explicit nonlinear theories with $p=1$. Finally, we also show that the M5-brane action in the Sen formulation is separated into a Henneaux-Teitelboim action in unphysical sector and a gauge-fixed PST in physical sector.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. A. Sen, “Covariant Action for Type IIB Supergravity,” JHEP 07 (2016) 017, arXiv:1511.08220 [hep-th].
  2. A. Sen, “Self-dual forms: Action, Hamiltonian and Compactification,” J. Phys. A 53 no. 8, (2020) 084002, arXiv:1903.12196 [hep-th].
  3. E. Andriolo, N. Lambert, and C. Papageorgakis, “Geometrical Aspects of An Abelian (2,0) Action,” JHEP 04 (2020) 200, arXiv:2003.10567 [hep-th].
  4. C. M. Hull, “Covariant Action for Self-Dual p-Form Gauge Fields in General Spacetimes,” arXiv:2307.04748 [hep-th].
  5. P. Vanichchapongjaroen, “Covariant M5-brane action with self-dual 3-form,” JHEP 05 (2021) 039, arXiv:2011.14384 [hep-th].
  6. A. Phonchantuek and P. Vanichchapongjaroen, “Double dimensional reduction of M5-brane action in Sen formalism,” Eur. Phys. J. C 83 no. 8, (2023) 721, arXiv:2305.04861 [hep-th].
  7. P. Pasti, D. P. Sorokin, and M. Tonin, “Note on manifest Lorentz and general coordinate invariance in duality symmetric models,” Phys. Lett. B 352 (1995) 59–63, arXiv:hep-th/9503182.
  8. P. Pasti, D. P. Sorokin, and M. Tonin, “Comment on ‘Covariant duality symmetric actions’,” Phys. Rev. D 56 (1997) 2473–2474, arXiv:hep-th/9607171.
  9. P. Pasti, D. P. Sorokin, and M. Tonin, “On Lorentz invariant actions for chiral p forms,” Phys. Rev. D 55 (1997) 6292–6298, arXiv:hep-th/9611100.
  10. P. Pasti, D. P. Sorokin, and M. Tonin, “Covariant action for a D = 11 five-brane with the chiral field,” Phys. Lett. B 398 (1997) 41–46, arXiv:hep-th/9701037.
  11. I. A. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D. P. Sorokin, and M. Tonin, “Covariant action for the superfive-brane of M theory,” Phys. Rev. Lett. 78 (1997) 4332–4334, arXiv:hep-th/9701149.
  12. M. Henneaux and C. Teitelboim, “Dynamics of Chiral (Selfdual) P𝑃Pitalic_P Forms,” Phys. Lett. B 206 (1988) 650–654.
  13. M. Perry and J. H. Schwarz, “Interacting chiral gauge fields in six-dimensions and Born-Infeld theory,” Nucl. Phys. B 489 (1997) 47–64, arXiv:hep-th/9611065.
  14. M. Aganagic, J. Park, C. Popescu, and J. H. Schwarz, “Dual D-brane actions,” Nucl. Phys. B 496 (1997) 215–230, arXiv:hep-th/9702133.
  15. M. Aganagic, J. Park, C. Popescu, and J. H. Schwarz, “World volume action of the M theory five-brane,” Nucl. Phys. B 496 (1997) 191–214, arXiv:hep-th/9701166.
  16. N. Lambert, “(2,0) Lagrangian Structures,” Phys. Lett. B 798 (2019) 134948, arXiv:1908.10752 [hep-th].
  17. L. D. Faddeev and R. Jackiw, “Hamiltonian Reduction of Unconstrained and Constrained Systems,” Phys. Rev. Lett. 60 (1988) 1692–1694.
  18. R. Jackiw, “(Constrained) quantization without tears,” in 2nd Workshop on Constraint Theory and Quantization Methods, pp. 367–381. 5, 1993. arXiv:hep-th/9306075.
  19. M. Cederwall, B. E. W. Nilsson, and P. Sundell, “An Action for the superfive-brane in D = 11 supergravity,” JHEP 04 (1998) 007, arXiv:hep-th/9712059.
  20. S. Chakrabarti and M. Raman, “Exploring T-Duality for Self-Dual Fields,” arXiv:2311.09153 [hep-th].
  21. A. A. Tseytlin and P. C. West, “TWO REMARKS ON CHIRAL SCALARS,” Phys. Rev. Lett. 65 (1990) 541–542.
  22. J. Sonnenschein, “CHIRAL BOSONS,” Nucl. Phys. B 309 (1988) 752–770.
  23. E. M. C. Abreu and C. Wotzasek, “Interference phenomenon for different chiral bosonization schemes,” Phys. Rev. D 58 (1998) 101701, arXiv:hep-th/9805043.
  24. N. Lambert, “Duality and fluxes in the sen formulation of self-dual fields,” Phys. Lett. B 840 (2023) 137888, arXiv:2302.10955 [hep-th].
  25. L. Andrianopoli, C. A. Cremonini, R. D’Auria, P. A. Grassi, R. Matrecano, R. Noris, L. Ravera, and M. Trigiante, “M5-brane in the superspace approach,” Phys. Rev. D 106 no. 2, (2022) 026010, arXiv:2206.06388 [hep-th].
  26. O. Evnin and K. Mkrtchyan, “Three approaches to chiral form interactions,” Differ. Geom. Appl. 89 (2023) 102016, arXiv:2207.01767 [hep-th].
  27. M. Henneaux and C. Teitelboim, Quantization of Gauge Systems. Princeton University Press, 8, 1994.
  28. J. H. Schwarz, “Coupling a selfdual tensor to gravity in six-dimensions,” Phys. Lett. B 395 (1997) 191–195, arXiv:hep-th/9701008.
  29. S.-L. Ko and P. Vanichchapongjaroen, “The Dual Formulation of M5-brane Action,” JHEP 06 (2016) 022, arXiv:1605.04705 [hep-th].
  30. S.-L. Ko and P. Vanichchapongjaroen, “A covariantisation of M5-brane action in dual formulation,” JHEP 01 (2018) 072, arXiv:1712.06408 [hep-th].
  31. A. Maznytsia, C. R. Preitschopf, and D. P. Sorokin, “Duality of selfdual actions,” Nucl. Phys. B 539 (1999) 438–452, arXiv:hep-th/9805110.
  32. A. Maznytsia, C. R. Preitschopf, and D. P. Sorokin, “Dual actions for chiral bosons,” in 10th Summer School / Seminar (Volga-10) on Recent Problems in Theoretical and Mathematical Physics. 6, 1998. arXiv:hep-th/9808049.
  33. W.-M. Chen and P.-M. Ho, “Lagrangian Formulations of Self-dual Gauge Theories in Diverse Dimensions,” Nucl. Phys. B 837 (2010) 1–21, arXiv:1001.3608 [hep-th].
  34. W.-H. Huang, “Lagrangian of Self-dual Gauge Fields in Various Formulations,” Nucl. Phys. B 861 (2012) 403–423, arXiv:1111.5118 [hep-th].
  35. P. Pasti, I. Samsonov, D. Sorokin, and M. Tonin, “BLG-motivated Lagrangian formulation for the chiral two-form gauge field in D=6 and M5-branes,” Phys. Rev. D 80 (2009) 086008, arXiv:0907.4596 [hep-th].
  36. S.-L. Ko, D. Sorokin, and P. Vanichchapongjaroen, “The M5-brane action revisited,” JHEP 11 (2013) 072, arXiv:1308.2231 [hep-th].
  37. S.-L. Ko and P. Vanichchapongjaroen, “Towards 2+4 formulation of M5-brane,” JHEP 12 (2015) 170, arXiv:1511.05395 [hep-th].
  38. K. Mkrtchyan, “On Covariant Actions for Chiral p−limit-from𝑝p-italic_p -Forms,” JHEP 12 (2019) 076, arXiv:1908.01789 [hep-th].
  39. Z. Avetisyan, O. Evnin, and K. Mkrtchyan, “Nonlinear (chiral) p-form electrodynamics,” JHEP 08 (2022) 112, arXiv:2205.02522 [hep-th].
  40. S. Bansal, “Manifestly covariant polynomial M5-brane lagrangians,” JHEP 01 (2024) 087, arXiv:2307.13449 [hep-th].
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube