Towards Optimal Circuit Size for Sparse Quantum State Preparation (2404.05147v2)
Abstract: Compared to general quantum states, the sparse states arise more frequently in the field of quantum computation. In this work, we consider the preparation for $n$-qubit sparse quantum states with $s$ non-zero amplitudes and propose two algorithms. The first algorithm uses $O(ns/\log n + n)$ gates, improving upon previous methods by $O(\log n)$. We further establish a matching lower bound for any algorithm which is not amplitude-aware and employs at most $\operatorname{poly}(n)$ ancillary qubits. The second algorithm is tailored for binary strings that exhibit a short Hamiltonian path. An application is the preparation of $U(1)$-invariant state with $k$ down-spins in a chain of length $n$, including Bethe states, for which our algorithm constructs a circuit of size $O\left(\binom{n}{k}\log n\right)$. This surpasses previous results by $O(n/\log n)$ and is close to the lower bound $O\left(\binom{n}{k}\right)$. Both the two algorithms shrink the existing gap theoretically and provide increasing advantages numerically.
- D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, “Simulating hamiltonian dynamics with a truncated taylor series,” Physical review letters, vol. 114, no. 9, p. 090502, 2015.
- G. H. Low and I. L. Chuang, “Optimal hamiltonian simulation by quantum signal processing,” Physical review letters, vol. 118, no. 1, p. 010501, 2017.
- ——, “Hamiltonian simulation by qubitization,” Quantum, vol. 3, p. 163, 2019.
- D. W. Berry, A. M. Childs, and R. Kothari, “Hamiltonian simulation with nearly optimal dependence on all parameters,” in 2015 IEEE 56th annual symposium on foundations of computer science. IEEE, 2015, pp. 792–809.
- M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum machine learning,” Contemporary Physics, vol. 56, no. 2, pp. 172–185, 2015.
- J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195–202, 2017.
- I. Kerenidis and A. Prakash, “Quantum recommendation systems,” arXiv preprint arXiv:1603.08675, 2016.
- P. Rebentrost, A. Steffens, I. Marvian, and S. Lloyd, “Quantum singular-value decomposition of nonsparse low-rank matrices,” Physical review A, vol. 97, no. 1, p. 012327, 2018.
- A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for linear systems of equations,” Physical review letters, vol. 103, no. 15, p. 150502, 2009.
- L. Wossnig, Z. Zhao, and A. Prakash, “Quantum linear system algorithm for dense matrices,” Physical review letters, vol. 120, no. 5, p. 050502, 2018.
- I. Kerenidis, J. Landman, A. Luongo, and A. Prakash, “q-means: A quantum algorithm for unsupervised machine learning,” Advances in neural information processing systems, vol. 32, 2019.
- I. Kerenidis and J. Landman, “Quantum spectral clustering,” Physical Review A, vol. 103, no. 4, p. 042415, 2021.
- P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector machine for big data classification,” Physical review letters, vol. 113, no. 13, p. 130503, 2014.
- M. Plesch and Č. Brukner, “Quantum-state preparation with universal gate decompositions,” Physical Review A, vol. 83, no. 3, p. 032302, 2011.
- N. Gleinig and T. Hoefler, “An efficient algorithm for sparse quantum state preparation,” in 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, 2021, pp. 433–438.
- I. F. Araujo, C. Blank, and A. J. da Silva, “Entanglement as a complexity measure for quantum state preparation,” J, 2021.
- A. G. Rattew and B. Koczor, “Preparing arbitrary continuous functions in quantum registers with logarithmic complexity,” arXiv preprint arXiv:2205.00519, 2022.
- W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Physical Review A, vol. 62, no. 6, p. 062314, 2000.
- A. Bärtschi and S. Eidenbenz, “Deterministic preparation of dicke states,” in International Symposium on Fundamentals of Computation Theory. Springer, 2019, pp. 126–139.
- W. Cottrell, B. Freivogel, D. M. Hofman, and S. F. Lokhande, “How to build the thermofield double state,” Journal of High Energy Physics, vol. 2019, no. 2, pp. 1–43, 2019.
- J. S. V. Dyke, G. S. Barron, N. J. Mayhall, E. Barnes, and S. E. Economou, “Preparing bethe ansatz eigenstates on a quantum computer,” PRX Quantum, vol. 2, no. 4, p. 040329, 2021.
- M. Ben-Or and A. Hassidim, “Fast quantum byzantine agreement,” in Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, 2005, pp. 481–485.
- E. Malvetti, R. Iten, and R. Colbeck, “Quantum circuits for sparse isometries,” Quantum, vol. 5, p. 412, 2021.
- T. M. de Veras, L. D. da Silva, and A. J. da Silva, “Double sparse quantum state preparation,” Quantum Information Processing, vol. 21, no. 6, p. 204, 2022.
- F. Mozafari, G. D. Micheli, and Y. Yang, “Efficient deterministic preparation of quantum states using decision diagrams,” Physical Review A, vol. 106, no. 2, p. 022617, 2022.
- D. Ramacciotti, A.-I. Lefterovici, and A. F. Rotundo, “A simple quantum algorithm to efficiently prepare sparse states,” arXiv preprint arXiv:2310.19309, 2023.
- L. Grover and T. Rudolph, “Creating superpositions that correspond to efficiently integrable probability distributions,” arXiv preprint quant-ph/0208112, 2002.
- X.-M. Zhang, T. Li, and X. Yuan, “Quantum state preparation with optimal circuit depth: Implementations and applications,” Physical Review Letters, vol. 129, no. 23, p. 230504, 2022.
- C. Gidney, “Constructing large controlled nots,” https://algassert.com/circuits/2015/06/05/Constructing-Large-Controlled-Nots.html, 2015.
- A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Physical review A, vol. 52, no. 5, p. 3457, 1995.
- K. Markov, I. Patel, and J. Hayes, “Optimal synthesis of linear reversible circuits,” Quantum Information and Computation, vol. 8, no. 3&4, pp. 0282–0294, 2008.
- D. V. Zakablukov, “On asymptotic gate complexity and depth of reversible circuits without additional memory,” Journal of Computer and System Sciences, vol. 84, pp. 132–143, 2017.
- J. Ernvall, J. Katajainen, and M. Penttonen, “NP-completeness of the hamming salesman problem,” BIT Numerical Mathematics, vol. 25, pp. 289–292, 1985.
- G. Cohen, S. Litsyn, and G. Zemor, “On the traveling salesman problem in binary hamming spaces,” IEEE Transactions on Information Theory, vol. 42, no. 4, pp. 1274–1276, 1996.
- D. Raveh and R. I. Nepomechie, “Deterministic bethe state preparation,” arXiv preprint arXiv:2403.03283, 2024.
- V. Vajnovszki and T. Walsh, “A loop-free two-close gray-code algorithm for listing k-ary dyck words,” Journal of Discrete Algorithms, vol. 4, no. 4, pp. 633–648, 2006.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.