Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fundamental Limits of Optical Fiber MIMO Channels With Finite Blocklength (2404.04477v1)

Published 6 Apr 2024 in cs.IT and math.IT

Abstract: The multiple-input and multiple-output (MIMO) technique is regarded as a promising approach to boost the throughput and reliability of optical fiber communications. However, the fundamental limits of optical fiber MIMO systems with finite block-length (FBL) are not available in the literature. This paper studies the fundamental limits of optical fiber multicore/multimode systems in the FBL regime when the coding rate is a perturbation within $\mathcal{O}(\frac{1}{\sqrt{ML}})$ of the capacity, where M and L represent the number of transmit channels and blocklength, respectively. Considering the Jacobi MIMO channel, which was proposed to model the nearly lossless propagation and the crosstalks in optical fiber systems, we derive the upper and lower bounds for the optimal error probability. For that purpose, we first set up the central limit theorem for the information density in the asymptotic regime where the number of transmit, receive, available channels and the blocklength go to infinity at the same pace. The result is then utilized to derive the upper and lower bounds for the optimal average error probability with the concerned rate. The derived theoretical results reveal interesting physical insights for Jacobi MIMO channels with FBL. First, the derived bounds for Jacobi channels degenerate to those for Rayleigh channels when the number of available channels approaches infinity. Second, the high signal-to-noise (SNR) approximation indicates that a larger number of available channels results in a larger error probability. Numerical results validate the accuracy of the theoretical results and show that the derived bounds are closer to the performance of practical LDPC codes than outage probability.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. A. C. Singer, N. R. Shanbhag, and H.-M. Bae, “Electronic dispersion compensation,” IEEE Signal Process. Mag., vol. 25, no. 6, pp. 110–130, Nov. 2008.
  2. P. J. Winzer, “Beyond 100g ethernet,” IEEE Commun. Mag., vol. 48, no. 7, pp. 26–30, Jul. 2010.
  3. P. J. Winzer and G. J. Foschini, “MIMO capacities and outage probabilities in spatially multiplexed optical transport systems,” Opt. Exp., vol. 19, no. 17, pp. 16 680–16 696, Aug. 2011.
  4. D. M. Marom and M. Blau, “Switching solutions for WDM-SDM optical networks,” IEEE Commun. Mag., vol. 53, no. 2, pp. 60–68, Feb. 2015.
  5. A. Tarighat, R. C. Hsu, A. Shah, A. H. Sayed, and B. Jalali, “Fundamentals and challenges of optical multiple-input multiple-output multimode fiber links [topics in optical communications],” IEEE Commun. Mag., vol. 45, no. 5, pp. 57–63, May. 2007.
  6. J. M. Fini, B. Zhu, T. F. Taunay, and M. F. Yan, “Statistics of crosstalk in bent multicore fibers,” Opt. Exp., vol. 18, no. 14, pp. 15 122–15 129, Jun. 2010.
  7. A. R. Shah, R. C. Hsu, A. Tarighat, A. H. Sayed, and B. Jalali, “Coherent optical MIMO (CMIMO),” J. Lightw. Technol., vol. 23, no. 8, pp. 2410–2419, 2005.
  8. R. C. Hsu, A. Tarighat, A. Shah, A. H. Sayed, and B. Jalali, “Capacity enhancement in coherent optical MIMO (COMIMO) multimode fiber links,” IEEE Commun. Lett., vol. 10, no. 3, pp. 195–197, 2006.
  9. R. Dar, M. Feder, and M. Shtaif, “The Jacobi MIMO channel,” IEEE Trans. Inf. Theory, vol. 59, no. 4, pp. 2426–2441, Dec. 2012.
  10. A. Karadimitrakis, A. L. Moustakas, and P. Vivo, “Outage capacity for the optical MIMO channel,” IEEE Trans. Inf. Theory, vol. 60, no. 7, pp. 4370–4382, Jul. 2014.
  11. A. Nafkha and R. Bonnefoi, “Upper and lower bounds for the ergodic capacity of MIMO Jacobi fading channels,” Opt. Exp., vol. 25, no. 11, pp. 12 144–12 151, May. 2017.
  12. A. Nafkha and N. Demni, “Closed-form expressions of ergodic capacity and MMSE achievable sum rate for MIMO Jacobi and Rayleigh fading channels,” IEEE Access, vol. 8, pp. 149 476–149 486, 2020.
  13. L. Wei, Z. Zheng, and H. Gharavi, “Exact moments of mutual information of Jacobi MIMO channels in high-SNR regime,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Abu Dhabi, United Arab Emirates, Dec. 2018, pp. 1–5.
  14. A. Laha and S. Kumar, “Optical MIMO communication with unequal power allocation to channels,” Optik, vol. 244, p. 167533, Oct. 2021.
  15. C. She, C. Yang, and T. Q. Quek, “Radio resource management for ultra-reliable and low-latency communications,” IEEE Commun. Mag., vol. 55, no. 6, pp. 72–78, Jun. 2017.
  16. Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307–2359, May. 2010.
  17. M. Hayashi, “Information spectrum approach to second-order coding rate in channel coding,” IEEE Trans. Inf. Theory, vol. 55, no. 11, pp. 4947–4966, Nov. 2009.
  18. Y. Polyanskiy and S. Verdú, “Scalar coherent fading channel: Dispersion analysis,” in Proc. IEEE Int. Symp. Inf. Theory. (ISIT), St. Petersburg, Russia, Aug. 2011, pp. 2959–2963.
  19. L. Zhou, A. Wolf, and M. Motani, “On lossy multi-connectivity: Finite blocklength performance and second-order asymptotics,” IEEE J. Sel. Areas Commun., vol. 37, no. 4, pp. 735–748, Apri. 2019.
  20. W. Yang, G. Durisi, T. Koch, and Y. Polyanskiy, “Quasi-static multiple-antenna fading channels at finite blocklength,” IEEE Trans. Inf. Theory, vol. 60, no. 7, pp. 4232–4265, Jul. 2014.
  21. A. Collins and Y. Polyanskiy, “Coherent multiple-antenna block-fading channels at finite blocklength,” IEEE Trans. Inf. Theory, vol. 65, no. 1, pp. 380–405, Jul. 2018.
  22. J. Hoydis, R. Couillet, and P. Piantanida, “The second-order coding rate of the MIMO quasi-static Rayleigh fading channel,” IEEE Trans. Inf. Theory, vol. 61, no. 12, pp. 6591–6622, Dec. 2015.
  23. X. Zhang and S. Song, “Mutual information density of massive MIMO systems over Rayleigh-product channels,” IEEE Trans. Commun., to appear. 2024.
  24. A. Karadimitrakis, R. Couillet, A. Moustakas, and L. Sanguinetti, “The Gallager bound in fiber optical MIMO,” in Proc. 21st Int. ITG Workshop Smart Antennas (WSA), Berlin, Germany, Mar. 2017, pp. 1–8.
  25. A. Karadimitrakis, A. L. Moustakas, and R. Couillet, “Gallager bound for MIMO channels: Large-N𝑁Nitalic_N asymptotics,” IEEE Trans. Wireless Commun., vol. 17, no. 2, pp. 1323–1330, Dec. 2017.
  26. R. Ryf, N. K. Fontaine, S. Wittek, K. Choutagunta, M. Mazur, H. Chen, J. C. Alvarado-Zacarias, R. Amezcua-Correa, M. Capuzzo, R. Kopf et al., “High-spectral-efficiency mode-multiplexed transmission over graded-index multimode fiber,” in Proc. Eur. Conf. Opt. Commun. (ECOC), Rome, Italy, 2018, pp. 1–3.
  27. W. Yang, G. Durisi, T. Koch, and Y. Polyanskiy, “Quasi-static SIMO fading channels at finite blocklength,” in Proc. IEEE Int. Symp. Inf. Theory. (ISIT), Istanbul, Turkey, Jul. 2013, pp. 1531–1535.
  28. L. Zhou, V. Y. Tan, and M. Motani, “The dispersion of mismatched joint source-channel coding for arbitrary sources and additive channels,” IEEE Trans. Inf. Theory, vol. 65, no. 4, pp. 2234–2251, Apri. 2018.
  29. W. Hachem, O. Khorunzhiy, P. Loubaton, J. Najim, and L. Pastur, “A new approach for mutual information analysis of large dimensional multi-antenna channels,” IEEE Trans. Inf. Theory, vol. 54, no. 9, pp. 3987–4004, Sep. 2008.
  30. A. L. Moustakas, S. H. Simon, and A. M. Sengupta, “MIMO capacity through correlated channels in the presence of correlated interferers and noise: A (not so) large N analysis,” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2545–2561, Oct. 2003.
  31. A. L. Moustakas, G. C. Alexandropoulos, and M. Debbah, “Reconfigurable intelligent surfaces and capacity optimization: A large system analysis,” IEEE Trans. Wireless Commun., vol. 22, no. 12, pp. 8736–8750, Apr. 2023.
  32. X. Zhang and S. Song, “Asymptotic mutual information analysis for double-scattering MIMO channels: A new approach by Gaussian tools,” IEEE Trans. Inf. Theory, vol. 69, no. 9, pp. 5497–5527, Sep. 2023.
  33. S. Verdú and S. Shamai, “Spectral efficiency of CDMA with random spreading,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 622–640, Mar. 1999.
  34. X. Zhang and S. Song, “Secrecy analysis for IRS-aided wiretap MIMO communications: Fundamental limits and system design,” IEEE Trans. Inf. Theory, early access, Nov. 2023, doi: 10.1109/TIT.2023.3336648.
  35. Z. Zhuang, X. Zhang, D. Xu, and S. Song, “Fundamental limits of two-hop MIMO channels: An asymptotic approach,” arXiv preprint arXiv:2402.03772, Feb. 2024.
  36. X. Zhang, X. Yu, and S. Song, “Outage probability and finite-SNR DMT analysis for IRS-aided MIMO systems: How large IRSs need to be?” IEEE J. Sel. Topics Signal Process., vol. 16, no. 5, pp. 1070–1085, Aug. 2022.
  37. X. Zhang and S. Song, “URLLC in IRS-aided MIMO systems: Finite blocklength analysis and design,” in Proc. Conf. Rec. 57th Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, USA, Oct. 2023, pp. 496–503.
  38. L. M. Zhang and F. R. Kschischang, “Low-complexity soft-decision concatenated LDGM-staircase FEC for high-bit-rate fiber-optic communication,” J. Lightw. Technol., vol. 35, no. 18, pp. 3991–3999, Sep. 2017.
  39. S. H. Muller-Weinfurtner, “Coding approaches for multiple antenna transmission in fast fading and OFDM,” IEEE Trans. Signal Process., vol. 50, no. 10, pp. 2442–2450, Oct. 2002.
  40. M. R. McKay and I. B. Collings, “Capacity and performance of MIMO-BICM with zero-forcing receivers,” IEEE Trans. Commun., vol. 53, no. 1, pp. 74–83, Jan. 2005.
  41. X. Zhang and S. Song, “Bias for the trace of the resolvent and its application on non-Gaussian and non-centered MIMO channels,” IEEE Trans. Inf. Theory, vol. 68, no. 5, pp. 2857–2876, May. 2022.
  42. S. H. Simon and A. L. Moustakas, “Crossover from conserving to lossy transport in circular random-matrix ensembles,” Phys. Rev. Lett., vol. 96, no. 13, p. 136805, Apr. 2006.
  43. Z. Bai, J. Hu, G. Pan, and W. Zhou, “Convergence of the empirical spectral distribution function of Beta matrices,” Bernoulli, vol. 21, no. 3, pp. 1538––1574, Aug. 2015.

Summary

We haven't generated a summary for this paper yet.