Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Upper and Lower Bounds for the Ergodic Capacity of MIMO Jacobi Fading Channels (1702.08258v1)

Published 27 Feb 2017 in cs.IT and math.IT

Abstract: In multi-(core/mode) optical fiber communication, the transmission channel can be modeled as a complex sub-matrix of the Haar-distributed unitary matrix (complex Jacobi unitary ensemble). In this letter, we present new analytical expressions of the upper and lower bounds for the ergodic capacity of multiple-input multiple-output Jacobi-fading channels. Recent results on the determinant of the Jacobi unitary ensemble are employed to derive a tight lower bound on the ergodic capacity. We use Jensen's inequality to provide an analytical closed-form upper bound to the ergodic capacity at any signal-to-noise ratio (SNR). Closed-form expressions of the ergodic capacity, at low and high SNR regimes, are also derived. Simulation results are presented to validate the accuracy of the derived expressions.

Citations (5)

Summary

We haven't generated a summary for this paper yet.