Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrated Optimal Fast Charging and Active Thermal Management of Lithium-Ion Batteries in Extreme Ambient Temperatures (2404.04358v3)

Published 5 Apr 2024 in eess.SY, cs.SY, and math.OC

Abstract: This paper presents an integrated control strategy for optimal fast charging and active thermal management of Lithium-ion batteries in extreme ambient temperatures, striking a balance between charging speed and battery health. A control-oriented thermal-NDC (nonlinear double-capacitor) battery model is proposed to describe the electrical and thermal dynamics, incorporating the effects of both an active thermal source and ambient temperature. A state-feedback model predictive control algorithm is then developed for optimal fast charging and active thermal management. Numerical experiments validate the algorithm under extreme temperatures, showing that the proposed algorithm can energy-efficiently adjust the battery temperature, thereby balancing charging speed and battery health. Additionally, an output-feedback model predictive control algorithm with an extended Kalman filter is proposed for battery charging when states are partially measurable. Numerical experiments validate the effectiveness under extreme temperatures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. A. Khaligh and Z. Li, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art,” IEEE Transactions on Vehicular Technology, vol. 59, no. 6, pp. 2806–2814, 2010.
  2. J. B. Goodenough and K.-S. Park, “The li-ion rechargeable battery: a perspective,” Journal of the American Chemical Society, vol. 135, no. 4, pp. 1167–1176, 2013.
  3. J. B. Goodenough, “Energy storage materials: a perspective,” Energy Storage Materials, vol. 1, pp. 158–161, 2015.
  4. Y. Wang, H. Fang, L. Zhou, and T. Wada, “Revisiting the state-of-charge estimation for lithium-ion batteries: A methodical investigation of the extended kalman filter approach,” IEEE Control Systems Magazine, vol. 37, no. 4, pp. 73–96, 2017.
  5. P. Ramadass, B. Haran, P. M. Gomadam, R. White, and B. N. Popov, “Development of first principles capacity fade model for li-ion cells,” Journal of the Electrochemical Society, vol. 151, no. 2, p. A196, 2004.
  6. C.-Y. Wang, G. Zhang, S. Ge, T. Xu, Y. Ji, X.-G. Yang, and Y. Leng, “Lithium-ion battery structure that self-heats at low temperatures,” Nature, vol. 529, no. 7587, pp. 515–518, 2016.
  7. X.-G. Yang, G. Zhang, S. Ge, and C.-Y. Wang, “Fast charging of lithium-ion batteries at all temperatures,” Proceedings of the National Academy of Sciences, vol. 115, no. 28, pp. 7266–7271, 2018.
  8. X.-G. Yang, T. Liu, S. Ge, E. Rountree, and C.-Y. Wang, “Challenges and key requirements of batteries for electric vertical takeoff and landing aircraft,” Joule, vol. 5, no. 7, pp. 1644–1659, 2021.
  9. P. Sun, R. Bisschop, H. Niu, and X. Huang, “A review of battery fires in electric vehicles,” Fire technology, vol. 56, pp. 1361–1410, 2020.
  10. R. Klein, N. A. Chaturvedi, J. Christensen, J. Ahmed, R. Findeisen, and A. Kojic, “Electrochemical model based observer design for a lithium-ion battery,” IEEE Transactions on Control Systems Technology, vol. 21, no. 2, pp. 289–301, 2012.
  11. T. Weaver, A. Allam, and S. Onori, “A novel lithium-ion battery pack modeling framework-series-connected case study,” in 2020 American Control Conference (ACC).   IEEE, 2020, pp. 365–372.
  12. N. Tian, H. Fang, J. Chen, and Y. Wang, “Nonlinear double-capacitor model for rechargeable batteries: Modeling, identification, and validation,” IEEE Transactions on Control Systems Technology, vol. 29, no. 1, pp. 370–384, 2020.
  13. H. He, R. Xiong, and J. Fan, “Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach,” Energies, vol. 4, no. 4, pp. 582–598, 2011.
  14. V. Johnson, “Battery performance models in advisor,” Journal of Power Sources, vol. 110, no. 2, pp. 321–329, 2002.
  15. H. Fang, Y. Wang, and J. Chen, “Health-aware and user-involved battery charging management for electric vehicles: Linear quadratic strategies,” IEEE Transactions on Control Systems Technology, vol. 25, no. 3, pp. 911–923, 2016.
  16. X. Lin, H. E. Perez, S. Mohan, J. B. Siegel, A. G. Stefanopoulou, Y. Ding, and M. P. Castanier, “A lumped-parameter electro-thermal model for cylindrical batteries,” Journal of Power Sources, vol. 257, pp. 1–11, 2014.
  17. H. E. Perez, X. Hu, S. Dey, and S. J. Moura, “Optimal charging of li-ion batteries with coupled electro-thermal-aging dynamics,” IEEE Transactions on Vehicular Technology, vol. 66, no. 9, pp. 7761–7770, 2017.
  18. N. Biju and H. Fang, “Battx: An equivalent circuit model for lithium-ion batteries over broad current ranges,” Applied Energy, vol. 339, p. 120905, 2023.
  19. A. A.-H. Hussein and I. Batarseh, “A review of charging algorithms for nickel and lithium battery chargers,” IEEE Transactions on Vehicular Technology, vol. 60, no. 3, pp. 830–838, 2011.
  20. Z. Lu and S. Mou, “Variable sampling mpc via differentiable time-warping function,” in 2023 American Control Conference (ACC), 2023, pp. 533–538.
  21. R. Klein, N. A. Chaturvedi, J. Christensen, J. Ahmed, R. Findeisen, and A. Kojic, “Optimal charging strategies in lithium-ion battery,” in Proceedings of the 2011 American Control Conference.   IEEE, 2011, pp. 382–387.
  22. M. A. Xavier and M. S. Trimboli, “Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models,” Journal of Power Sources, vol. 285, pp. 374–384, 2015.
  23. C. Zou, X. Hu, Z. Wei, and X. Tang, “Electrothermal dynamics-conscious lithium-ion battery cell-level charging management via state-monitored predictive control,” Energy, vol. 141, pp. 250–259, 2017.
  24. C. Zou, C. Manzie, and D. Nešić, “Model predictive control for lithium-ion battery optimal charging,” IEEE/ASME Transactions on Mechatronics, vol. 23, no. 2, pp. 947–957, 2018.
  25. Q. Ouyang, J. Chen, J. Zheng, and H. Fang, “Optimal multiobjective charging for lithium-ion battery packs: A hierarchical control approach,” IEEE Transactions on Industrial Informatics, vol. 14, no. 9, pp. 4243–4253, 2018.
  26. H. Fang, C. Depcik, and V. Lvovich, “Optimal pulse-modulated lithium-ion battery charging: Algorithms and simulation,” Journal of Energy Storage, vol. 15, pp. 359–367, 2018.
  27. N. Tian, H. Fang, and Y. Wang, “Real-time optimal lithium-ion battery charging based on explicit model predictive control,” IEEE Transactions on Industrial Informatics, vol. 17, no. 2, pp. 1318–1330, 2020.
  28. V. Azimi, A. Allam, and S. Onori, “Extending life of lithium-ion battery systems by embracing heterogeneities via an optimal control-based active balancing strategy,” IEEE Transactions on Control Systems Technology, 2022.
  29. S. Feng, R. de Castro, and I. Ebrahimi, “Fast charging of batteries using cascade-control-barrier functions,” in 2023 American Control Conference (ACC).   IEEE, 2023, pp. 2481–2486.
  30. A. Hamednia, N. Murgovski, J. Fredriksson, J. Forsman, M. Pourabdollah, and V. Larsson, “Optimal thermal management, charging, and eco-driving of battery electric vehicles,” IEEE Transactions on Vehicular Technology, 2023.
  31. J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “Casadi: a software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, vol. 11, pp. 1–36, 2019.
  32. A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,” Mathematical Programming, vol. 106, pp. 25–57, 2006.
  33. R. Lowry, “Concepts and applications of inferential statistics,” 2014.
  34. W. M. Wonham, “On the separation theorem of stochastic control,” SIAM Journal on Control, vol. 6, no. 2, pp. 312–326, 1968.
  35. A. N. Atassi and H. K. Khalil, “A separation principle for the stabilization of a class of nonlinear systems,” IEEE Transactions on Automatic Control, vol. 44, no. 9, pp. 1672–1687, 1999.
  36. T. T. Georgiou and A. Lindquist, “The separation principle in stochastic control, redux,” IEEE Transactions on Automatic Control, vol. 58, no. 10, pp. 2481–2494, 2013.

Summary

We haven't generated a summary for this paper yet.