Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accounting for the Effects of Probabilistic Uncertainty During Fast Charging of Lithium-ion Batteries (2405.01681v1)

Published 2 May 2024 in eess.SY and cs.SY

Abstract: Batteries are nonlinear dynamical systems that can be modeled by Porous Electrode Theory models. The aim of optimal fast charging is to reduce the charging time while keeping battery degradation low. Most past studies assume that model parameters and ambient temperature are a fixed known value and that all PET model parameters are perfectly known. In real battery operation, however, the ambient temperature and the model parameters are uncertain. To ensure that operational constraints are satisfied at all times in the context of model-based optimal control, uncertainty quantification is required. Here, we analyze optimal fast charging for modest uncertainty in the ambient temperature and 23 model parameters. Uncertainty quantification of the battery model is carried out using non-intrusive polynomial chaos expansion and the results are verified with Monte Carlo simulations. The method is investigated for a constant current--constant voltage charging strategy for a battery for which the strategy is known to be standard for fast charging subject to operating below maximum current and charging constraints. Our results demonstrate that uncertainty in ambient temperature results in violations of constraints on the voltage and temperature. Our results identify a subset of key parameters that contribute to fast charging among the overall uncertain parameters. Additionally, it is shown that the constraints represented by voltage, temperature, and lithium-plating overpotential are violated due to uncertainties in the ambient temperature and parameters. The C-rate and charge constraints are then adjusted so that the probability of violating the degradation acceleration condition is below a pre-specified value. This approach demonstrates a computationally efficient approach for determining fast-charging protocols that take probabilistic uncertainties into account.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. J. Newman and W. Tiedmann, “Porous-electrode theory with battery applications,” AlChE Journal, vol. 21, no. 1, pp. 25–41, 1975.
  2. J. S. Edge, S. O’Kane, R. Prosser, N. D. Kirkaldy, A. N. Patel, A. Hales, A. Ghosh, W. Ai, J. Chen, J. Yang, S. Li, M.-C. Pang, L. Bravo Diaz, A. Tomaszewska, M. W. Marzook, K. N. Radhakrishnan, H. Wang, Y. Patel, B. Wu, and G. J. Offer, “Lithium ion battery degradation: What you need to know,” Physical Chemistry Chemical Physics, vol. 23, no. 14, pp. 8200–8221, 2021.
  3. S. E. O’Kane, W. Ai, G. Madabattula, D. Alonso-Alvarez, R. Timms, V. Sulzer, J. S. Edge, B. Wu, G. J. Offer, and M. Marinescu, “Lithium-ion battery degradation: How to model it,” Physical Chemistry Chemical Physics, vol. 24, no. 13, pp. 7909–7922, 2022.
  4. M. D. Berliner, D. A. Cogswell, M. Z. Bazant, and R. D. Braatz, “Methods—PETLION: Open-source software for millisecond-scale porous electrode theory-based lithium-ion battery simulations,” Journal of The Electrochemical Society, vol. 168, no. 9, p. 090504, 2021.
  5. M. D. Berliner, H. Zhao, S. Das, M. Forsuelo, B. Jiang, W. H. Chueh, M. Z. Bazant, and R. D. Braatz, “Nonlinear identifiability analysis of the porous electrode theory model of lithium-ion batteries,” Journal of The Electrochemical Society, vol. 168, no. 9, p. 090546, 2021.
  6. G. Galuppini, M. D. Berliner, D. A. Cogswell, D. Zhuang, M. Z. Bazant, and R. D. Braatz, “Nonlinear identifiability analysis of multiphase porous electrode theory-based battery models: A lithium iron phosphate case study,” Journal of Power Sources, vol. 573, p. 233009, 2023.
  7. S. Bashash and H. K. Fathy, “Battery state of health and charge estimation using polynomial chaos theory,” in Proceedings of the Dynamic Systems and Control Conference, vol. 56123, 2013, p. V001T05A006.
  8. M. Streb, M. Ohrelius, M. Klett, and G. Lindbergh, “Improving Li-ion battery parameter estimation by global optimal experiment design,” Journal of Energy Storage, vol. 56, p. 105948, 2022.
  9. P. L. T. Duong and N. Raghavan, “Uncertainty quantification in prognostics: A data driven polynomial chaos approach,” in Proceedings of the IEEE International Conference on Prognostics and Health Management, 2017, pp. 135–142.
  10. S. Orcioni and M. Conti, “Stochastic model of lithium-ion batteries based on polynomial chaos expansion,” in Proceedings of the International Conference on Clean Electrical Power, 2019, pp. 141–144.
  11. M. Hadigol, K. Maute, and A. Doostan, “On uncertainty quantification of lithium-ion batteries: Application to an LiC6/LiCoO2 cell,” Journal of Power Sources, vol. 300, pp. 507–524, 2015.
  12. J. Fogelquist, Q. Lai, and X. Lin, “On the error of Li-ion battery parameter estimation subject to system uncertainties,” Journal of The Electrochemical Society, vol. 170, no. 3, p. 030510, 3 2023.
  13. M. Streb, M. Andersson, V. Löfqvist Klass, M. Klett, M. Johansson, and G. Lindbergh, “Investigating re-parametrization of electrochemical model-based battery management using real-world driving data,” eTransportation, vol. 16, p. 100231, 2023.
  14. A. Pozzi and D. M. Raimondo, “Stochastic model predictive control for optimal charging of electric vehicles battery packs,” Journal of Energy Storage, vol. 55, p. 105332, 2022.
  15. J. Matschek, M. D. Berliner, A. Himmel, R. D. Braatz, and R. Findeisen, “Necessary optimality conditions for fast lithium-ion battery charging via hybrid simulations,” in Proceedings of the American Control Conference, 2023, pp. 3783–3789.
  16. D. E. Shen and R. D. Braatz, “Polynomial chaos-based robust design of systems with probabilistic uncertainties,” AIChE Journal, vol. 62, no. 9, pp. 3310–3318, 2016.
  17. D. Xiu and G. E. Karniadakis, “The Wiener–Askey polynomial chaos for stochastic differential equations,” SIAM Journal on Scientific Computing, vol. 24, no. 2, pp. 619–644, 2002.
  18. K. Dammak, S. Koubaa, A. El Hami, L. Walha, and M. Haddar, “Numerical modeling of uncertainty in acoustic propagation via generalized polynomial chaos,” Journal of Theoretical and Applied Mechanics, vol. 57, no. 1, pp. 3–15, 2019.
  19. D. Xiu and G. E. Karniadakis, “Modeling uncertainty in flow simulations via generalized polynomial chaos,” Journal of Computational Physics, vol. 187, no. 1, pp. 137–167, 2003.
  20. M. Berveiller, B. Sudret, and M. Lemaire, “Stochastic finite element: a non intrusive approach by regression,” Revue Européenne de Mécanique Numérique/European Journal of Computational Mechanics, vol. 15, no. 1-2-3, pp. 81–92, 2006.
  21. T. Homma and A. Saltelli, “Importance measures in global sensitivity analysis of nonlinear models,” Reliability Engineering & System Safety, vol. 52, no. 1, pp. 1–17, 1996.
  22. B. Sudret, “Global sensitivity analysis using polynomial chaos expansions,” Reliability Engineering & System Safety, vol. 93, no. 7, pp. 964–979, 2008.
  23. F. Leng, C. M. Tan, and M. Pecht, “Effect of temperature on the aging rate of Li ion battery operating above room temperature,” Scientific Reports, vol. 5, no. 1, p. 12967, 2015.
  24. R. Klein, N. A. Chaturvedi, J. Christensen, J. Ahmed, R. Findeisen, and A. Kojic, “Optimal charging strategies in lithium-ion battery,” in Proceedings of the American Control Conference, 2011, pp. 382–387.
  25. M. Faisal, M. Hannan, P. J. Ker, M. S. H. Lipu, and M. N. Uddin, “Fuzzy-based charging–discharging controller for lithium-ion battery in microgrid applications,” IEEE Transactions on Industry Applications, vol. 57, no. 4, pp. 4187–4195, 2021.
  26. A. Garg and M. Das, “High efficiency three phase interleaved buck converter for fast charging of EV,” in Proceedings of the International Conference on Power Electronics and Energy, 2021, pp. 1–5.
  27. M. Torchio, L. Magni, R. B. Gopaluni, R. D. Braatz, and D. M. Raimondo, “LIONSIMBA: A Matlab framework based on a finite volume model suitable for Li-ion battery design, simulation, and control,” Journal of The Electrochemical Society, vol. 163, no. 7, pp. A1192–A1205, 2016.

Summary

We haven't generated a summary for this paper yet.