Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Gravitational collapse in effective loop quantum gravity: beyond marginally bound configurations (2404.04192v2)

Published 5 Apr 2024 in gr-qc

Abstract: We study gravitational collapse in effective loop quantum gravity, focusing on non-marginally bound configurations in Lema^itre-Tolman-Bondi spacetimes. In the homogeneous limit we recover the effective dynamics of loop quantum cosmology for Friedman cosmologies with spatial curvature. We study a particular family of configurations with a homogeneous interior and a sharp boundary where the dust energy density rapidly and continuously decreases to zero. For these configurations, the gravitational collapse continues to the Planck regime when a bounce occurs, at which point the dust ball starts to expand, and a shock wave forms in the gravitational field within the order of a Planck time after the bounce. The shock slowly moves outwards, eventually reaching the horizon which then disappears, at which time there is no longer a black hole. If the initial configuration is bound, the shock asymptotes to a maximal radius, whereas for unbound initial configurations the shock escapes to infinity. In all cases, the black hole lifetime is proportional to the square of the black hole mass, and additionally depends on how strongly bound the dust profile is; this last quantity also affects the vacuum region outside the dust profile which is not solely determined by the black hole mass and charge as in spherically symmetric general relativity. We also use numerics to study a wide range of other types of initial configurations, both bound and unbound, with qualitatively similar results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (81)
  1. J. R. Oppenheimer and H. Snyder, “On Continued gravitational contraction,” Phys. Rev. 56 (1939) 455–459.
  2. R. Penrose, “Gravitational collapse and space-time singularities,” Phys. Rev. Lett. 14 (1965) 57–59.
  3. M. Bojowald, T. Harada, and R. Tibrewala, “Lemaitre-Tolman-Bondi collapse from the perspective of loop quantum gravity,” Phys. Rev. D 78 (2008) 064057, arXiv:0806.2593.
  4. M. Bojowald, J. D. Reyes, and R. Tibrewala, “Non-marginal LTB-like models with inverse triad corrections from loop quantum gravity,” Phys. Rev. D 80 (2009) 084002, arXiv:0906.4767.
  5. R. Tibrewala, “Spherically symmetric Einstein-Maxwell theory and loop quantum gravity corrections,” Class. Quant. Grav. 29 (2012) 235012, arXiv:1207.2585.
  6. Y. Liu, D. Malafarina, L. Modesto, and C. Bambi, “Singularity avoidance in quantum-inspired inhomogeneous dust collapse,” Phys. Rev. D 90 (2014) 044040, arXiv:1405.7249.
  7. J. G. Kelly, R. Santacruz, and E. Wilson-Ewing, “Black hole collapse and bounce in effective loop quantum gravity,” Class. Quant. Grav. 38 (2021) 04LT01, arXiv:2006.09325.
  8. A. Alonso-Bardaji and D. Brizuela, “Anomaly-free deformations of spherical general relativity coupled to matter,” Phys. Rev. D 104 (2021) 084064, arXiv:2106.07595.
  9. V. Husain, J. G. Kelly, R. Santacruz, and E. Wilson-Ewing, “Quantum Gravity of Dust Collapse: Shock Waves from Black Holes,” Phys. Rev. Lett. 128 (2022) 121301, arXiv:2109.08667.
  10. V. Husain, J. G. Kelly, R. Santacruz, and E. Wilson-Ewing, “Fate of quantum black holes,” Phys. Rev. D 106 (2022) 024014, arXiv:2203.04238.
  11. K. Giesel, H. Liu, E. Rullit, P. Singh, and S. A. Weigl, “Embedding generalized LTB models in polymerized spherically symmetric spacetimes,” arXiv:2308.10949.
  12. K. Giesel, H. Liu, P. Singh, and S. A. Weigl, “Generalized analysis of a dust collapse in effective loop quantum gravity: fate of shocks and covariance,” arXiv:2308.10953.
  13. F. Fazzini, V. Husain, and E. Wilson-Ewing, “Shell-crossings and shock formation during gravitational collapse in effective loop quantum gravity,” arXiv:2312.02032.
  14. A. Alonso-Bardaji and D. Brizuela, “Nonsingular collapse of a spherical dust cloud,” arXiv:2312.15505.
  15. A. Perez, “Black Holes in Loop Quantum Gravity,” Rept. Prog. Phys. 80 (2017) 126901, arXiv:1703.09149.
  16. R. Gambini, J. Olmedo, and J. Pullin, “Quantum Geometry and Black Holes,” in Handbook of Quantum Gravity, Bambi, C., Modesto, L., Shapiro, I., ed. Springer, 2023. arXiv:2211.05621.
  17. A. Ashtekar, J. Olmedo, and P. Singh, “Regular black holes from Loop Quantum Gravity,” in Regular Black Holes: Towards a New Paradigm of Gravitational Collapse, Bambi, C., ed. Springer, 2023. arXiv:2301.01309.
  18. L. Modesto, “Gravitational collapse in loop quantum gravity,” Int. J. Theor. Phys. 47 (2008) 357–373, arXiv:gr-qc/0610074.
  19. J. Ziprick and G. Kunstatter, “Dynamical Singularity Resolution in Spherically Symmetric Black Hole Formation,” Phys. Rev. D 80 (2009) 024032, arXiv:0902.3224.
  20. Y. Tavakoli, J. a. Marto, and A. Dapor, “Semiclassical dynamics of horizons in spherically symmetric collapse,” Int. J. Mod. Phys. D 23 (2014) 1450061, arXiv:1303.6157.
  21. C. Rovelli and F. Vidotto, “Planck stars,” Int. J. Mod. Phys. D 23 (2014) 1442026, arXiv:1401.6562.
  22. A. Barrau and C. Rovelli, “Planck star phenomenology,” Phys. Lett. B 739 (2014) 405–409, arXiv:1404.5821.
  23. H. M. Haggard and C. Rovelli, “Quantum-gravity effects outside the horizon spark black to white hole tunneling,” Phys. Rev. D 92 (2015) 104020, arXiv:1407.0989.
  24. C. Barceló, R. Carballo-Rubio, and L. J. Garay, “Mutiny at the white-hole district,” Int. J. Mod. Phys. D 23 (2014) 1442022, arXiv:1407.1391.
  25. C. Barcelo, R. Carballo-Rubio, L. J. Garay, and G. Jannes, “The lifetime problem of evaporating black holes: mutiny or resignation,” Class. Quant. Grav. 32 (2015) 035012, arXiv:1409.1501.
  26. A. Barrau, C. Rovelli, and F. Vidotto, “Fast Radio Bursts and White Hole Signals,” Phys. Rev. D 90 (2014) 127503, arXiv:1409.4031.
  27. A. Barrau, B. Bolliet, F. Vidotto, and C. Weimer, “Phenomenology of bouncing black holes in quantum gravity: a closer look,” JCAP 02 (2016) 022, arXiv:1507.05424.
  28. M. Christodoulou, C. Rovelli, S. Speziale, and I. Vilensky, “Planck star tunneling time: An astrophysically relevant observable from background-free quantum gravity,” Phys. Rev. D 94 (2016) 084035, arXiv:1605.05268.
  29. D. Malafarina, “Classical collapse to black holes and quantum bounces: A review,” Universe 3 (2017) 48, arXiv:1703.04138.
  30. J. Olmedo, S. Saini, and P. Singh, “From black holes to white holes: a quantum gravitational, symmetric bounce,” Class. Quant. Grav. 34 (2017) 225011, arXiv:1707.07333.
  31. E. Bianchi, M. Christodoulou, F. D’Ambrosio, H. M. Haggard, and C. Rovelli, “White Holes as Remnants: A Surprising Scenario for the End of a Black Hole,” Class. Quant. Grav. 35 (2018) 225003, arXiv:1802.04264.
  32. J. Ben Achour, S. Brahma, and J.-P. Uzan, “Bouncing compact objects. Part I. Quantum extension of the Oppenheimer-Snyder collapse,” JCAP 03 (2020) 041, arXiv:2001.06148.
  33. J. Ben Achour and J.-P. Uzan, “Bouncing compact objects. II. Effective theory of a pulsating Planck star,” Phys. Rev. D 102 (2020) 124041, arXiv:2001.06153.
  34. J. Ben Achour, S. Brahma, S. Mukohyama, and J. P. Uzan, “Towards consistent black-to-white hole bounces from matter collapse,” JCAP 09 (2020) 020, arXiv:2004.12977.
  35. J. Münch, “Effective quantum dust collapse via surface matching,” Class. Quant. Grav. 38 (2021) 175015, arXiv:2010.13480.
  36. T. Schmitz, “Exteriors to bouncing collapse models,” Phys. Rev. D 103 (2021) 064074, arXiv:2012.04383.
  37. J. Münch, “Causal structure of a recent loop quantum gravity black hole collapse model,” Phys. Rev. D 104 (2021) 046019, arXiv:2103.17112.
  38. B.-F. Li and P. Singh, “Does the Loop Quantum μosubscript𝜇𝑜\mu_{o}italic_μ start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT Scheme Permit Black Hole Formation?,” Universe 7 (2021) 406, arXiv:2110.15373.
  39. J. Lewandowski, Y. Ma, J. Yang, and C. Zhang, “Quantum Oppenheimer-Snyder and Swiss Cheese Models,” Phys. Rev. Lett. 130 (2023) 101501, arXiv:2210.02253.
  40. K. Giesel, M. Han, B.-F. Li, H. Liu, and P. Singh, “Spherical symmetric gravitational collapse of a dust cloud: Polymerized dynamics in reduced phase space,” Phys. Rev. D 107 (2023) 044047, arXiv:2212.01930.
  41. M. Han, C. Rovelli, and F. Soltani, “Geometry of the black-to-white hole transition within a single asymptotic region,” Phys. Rev. D 107 (2023) 064011, arXiv:2302.03872.
  42. M. Bobula and T. Pawłowski, “Rainbow Oppenheimer-Snyder collapse and the entanglement entropy production,” Phys. Rev. D 108 (2023) 026016, arXiv:2303.12708.
  43. F. Fazzini, C. Rovelli, and F. Soltani, “Painlevé-Gullstrand coordinates discontinuity in the quantum Oppenheimer-Snyder model,” Phys. Rev. D 108 (2023) 044009, arXiv:2307.07797.
  44. L. Cafaro and J. Lewandowski, “Status of Birkhoff’s theorem in polymerized semiclassical regime of Loop Quantum Gravity,” arXiv:2403.01910.
  45. S. Hossenfelder, L. Modesto, and I. Premont-Schwarz, “A Model for non-singular black hole collapse and evaporation,” Phys. Rev. D 81 (2010) 044036, arXiv:0912.1823.
  46. M. Campiglia, R. Gambini, J. Olmedo, and J. Pullin, “Quantum self-gravitating collapsing matter in a quantum geometry,” Class. Quant. Grav. 33 (2016) 18LT01, arXiv:1601.05688.
  47. K. Giesel, B.-F. Li, and P. Singh, “Nonsingular quantum gravitational dynamics of an Lemaître-Tolman-Bondi dust shell model: The role of quantization prescriptions,” Phys. Rev. D 104 (2021) 106017, arXiv:2107.05797.
  48. M. Han and H. Liu, “Covariant μ¯¯𝜇{\bar{\mu}}over¯ start_ARG italic_μ end_ARG-scheme effective dynamics, mimetic gravity, and non-singular black holes: Applications to spherical symmetric quantum gravity and CGHS model,” arXiv:2212.04605.
  49. S. A. Hayward, “Formation and evaporation of regular black holes,” Phys. Rev. Lett. 96 (2006) 031103, arXiv:gr-qc/0506126.
  50. C. Bambi, D. Malafarina, and L. Modesto, “Non-singular quantum-inspired gravitational collapse,” Phys. Rev. D 88 (2013) 044009, arXiv:1305.4790.
  51. C. Barceló, R. Carballo-Rubio, and L. J. Garay, “Black holes turn white fast, otherwise stay black: no half measures,” JHEP 01 (2016) 157, arXiv:1511.00633.
  52. J. Ziprick, J. Gegenberg, and G. Kunstatter, “Polymer Quantization of a Self-Gravitating Thin Shell,” Phys. Rev. D 94 (2016) 104076, arXiv:1609.06665.
  53. T. Schmitz, “Towards a quantum Oppenheimer-Snyder model,” Phys. Rev. D 101 (2020) 026016, arXiv:1912.08175.
  54. W. Piechocki and T. Schmitz, “Quantum Oppenheimer-Snyder model,” Phys. Rev. D 102 (2020) 046004, arXiv:2004.02939.
  55. M. Bojowald, S. Brahma, and J. D. Reyes, “Covariance in models of loop quantum gravity: Spherical symmetry,” Phys. Rev. D 92 (2015) 045043, arXiv:1507.00329.
  56. J. Ben Achour, S. Brahma, and A. Marciano, “Spherically symmetric sector of self dual Ashtekar gravity coupled to matter: Anomaly-free algebra of constraints with holonomy corrections,” Phys. Rev. D 96 (2017) 026002, arXiv:1608.07314.
  57. F. Benitez, R. Gambini, L. Lehner, S. Liebling, and J. Pullin, “Critical collapse of a scalar field in semiclassical loop quantum gravity,” Phys. Rev. Lett. 124 (2020) 071301, arXiv:2002.04044.
  58. A. Alonso-Bardaji and D. Brizuela, “Holonomy and inverse-triad corrections in spherical models coupled to matter,” Eur. Phys. J. C 81 (2021) 283, arXiv:2010.14437.
  59. R. Gambini, F. Benítez, and J. Pullin, “A Covariant Polymerized Scalar Field in Semi-Classical Loop Quantum Gravity,” Universe 8 (2022) 526, arXiv:2102.09501.
  60. A. Kreienbuehl, V. Husain, and S. S. Seahra, “Modified general relativity as a model for quantum gravitational collapse,” Class. Quant. Grav. 29 (2012) 095008, arXiv:1011.2381.
  61. C. Vaz and L. Witten, “Canonical quantization of spherically symmetric dust collapse,” Gen. Rel. Grav. 43 (2011) 3429–3449, arXiv:1111.6821.
  62. C. Kiefer and T. Schmitz, “Singularity avoidance for collapsing quantum dust in the Lemaître-Tolman-Bondi model,” Phys. Rev. D 99 (2019) 126010, arXiv:1904.13220.
  63. S. Hergott, V. Husain, and S. Rastgoo, “Model metrics for quantum black hole evolution: Gravitational collapse, singularity resolution, and transient horizons,” Phys. Rev. D 106 (2022) 046012, arXiv:2206.06425.
  64. A. Bonanno, D. Malafarina, and A. Panassiti, “Dust Collapse in Asymptotic Safety: A Path to Regular Black Holes,” Phys. Rev. Lett. 132 (2024) 031401, arXiv:2308.10890.
  65. P. D. Lasky, A. W. C. Lun, and R. B. Burston, “Initial value formalism for dust collapse,” ANZIAM Journal 49 (2007) arXiv:gr-qc/0606003.
  66. K. Giesel, J. Tambornino, and T. Thiemann, “LTB spacetimes in terms of Dirac observables,” Class. Quant. Grav. 27 (2010) 105013, arXiv:0906.0569.
  67. K. Vandersloot, “Loop quantum cosmology and the k=−1𝑘1k=-1italic_k = - 1 Robertson-Walker model,” Phys. Rev. D 75 (2007) 023523, arXiv:gr-qc/0612070.
  68. P. Singh and E. Wilson-Ewing, “Quantization ambiguities and bounds on geometric scalars in anisotropic loop quantum cosmology,” Class. Quant. Grav. 31 (2014) 035010, arXiv:1310.6728.
  69. A. Ashtekar and P. Singh, “Loop Quantum Cosmology: A Status Report,” Class. Quant. Grav. 28 (2011) 213001, arXiv:1108.0893.
  70. J. G. Kelly, R. Santacruz, and E. Wilson-Ewing, “Effective loop quantum gravity framework for vacuum spherically symmetric spacetimes,” Phys. Rev. D 102 (2020) 106024, arXiv:2006.09302.
  71. K. Martel and E. Poisson, “Regular coordinate systems for Schwarzschild and other spherical space-times,” Am. J. Phys. 69 (2001) 476–480, arXiv:gr-qc/0001069.
  72. P. Singh, “Are loop quantum cosmos never singular?,” Class. Quant. Grav. 26 (2009) 125005, arXiv:0901.2750.
  73. X.-D. Liu, S. Osher, and T. Chan, “Weighted Essentially Non-oscillatory Schemes,” Journal of Computational Physics 115 (1994) 200–212.
  74. A. Henrick, T. Aslam, and J. Powers, “Mapped weighted essentially non-oscillatory schemes: Achiving optimal order near critical points,” Journal of Computational Physics 207 (2005) 542–567.
  75. R. Borges, M. Carmona, B. Costa, and W. S. Don, “An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws,” Journal of Computational Physics 227 (2008) 3191–3211.
  76. M. Castro, B. Costa, and W. S. Don, “High Order Weighted Essentially Non-Oscillatory WENO-Z Schemes for Hyperbolic Conservation Laws,” J. Comput. Phys. 230 (2011) 1766–1792.
  77. R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 2002.
  78. C.-W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes,” Journal of Computational Physics 77 (1988) 439–471.
  79. D. M. Eardley, “Death of White Holes in the Early Universe,” Phys. Rev. Lett. 33 (1974) 442–444.
  80. E. Poisson and W. Israel, “Inner-horizon instability and mass inflation in black holes,” Phys. Rev. Lett. 63 (1989) 1663–1666.
  81. C. Hellaby and K. Lake, “Shell Crossings and the Tolman Model,” Astrophys. J. 290 (1985) 381.
Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com