Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

MarsSeg: Mars Surface Semantic Segmentation with Multi-level Extractor and Connector (2404.04155v1)

Published 5 Apr 2024 in cs.CV

Abstract: The segmentation and interpretation of the Martian surface play a pivotal role in Mars exploration, providing essential data for the trajectory planning and obstacle avoidance of rovers. However, the complex topography, similar surface features, and the lack of extensive annotated data pose significant challenges to the high-precision semantic segmentation of the Martian surface. To address these challenges, we propose a novel encoder-decoder based Mars segmentation network, termed MarsSeg. Specifically, we employ an encoder-decoder structure with a minimized number of down-sampling layers to preserve local details. To facilitate a high-level semantic understanding across the shadow multi-level feature maps, we introduce a feature enhancement connection layer situated between the encoder and decoder. This layer incorporates Mini Atrous Spatial Pyramid Pooling (Mini-ASPP), Polarized Self-Attention (PSA), and Strip Pyramid Pooling Module (SPPM). The Mini-ASPP and PSA are specifically designed for shadow feature enhancement, thereby enabling the expression of local details and small objects. Conversely, the SPPM is employed for deep feature enhancement, facilitating the extraction of high-level semantic category-related information. Experimental results derived from the Mars-Seg and AI4Mars datasets substantiate that the proposed MarsSeg outperforms other state-of-the-art methods in segmentation performance, validating the efficacy of each proposed component.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. C. Li, R. Zhang, D. Yu, G. Dong, J. Liu, Y. Geng, Z. Sun, W. Yan, X. Ren, Y. Su et al., “China’s mars exploration mission and science investigation,” Space Science Reviews, vol. 217, no. 4, p. 57, 2021.
  2. D. M. DeLatte, S. T. Crites, N. Guttenberg, E. J. Tasker, and T. Yairi, “Segmentation convolutional neural networks for automatic crater detection on mars,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12, no. 8, pp. 2944–2957, 2019.
  3. Q. Meng, D. Wang, X. Wang, W. Li, X. Yang, D. Yan, Y. Li, Z. Cao, Q. Ji, T. Sun et al., “High resolution imaging camera (hiric) on china’s first mars exploration tianwen-1 mission,” Space Science Reviews, vol. 217, pp. 1–29, 2021.
  4. K. Chen, B. Chen, C. Liu, W. Li, Z. Zou, and Z. Shi, “Rsmamba: Remote sensing image classification with state space model,” arXiv preprint arXiv:2403.19654, 2024.
  5. K. Chen, Z. Zou, and Z. Shi, “Building extraction from remote sensing images with sparse token transformers,” Remote Sensing, vol. 13, no. 21, p. 4441, 2021.
  6. X. Liu, S. Li, and M. Xin, “Mars entry trajectory planning with range discretization and successive convexification,” Journal of Guidance, Control, and Dynamics, vol. 45, no. 4, pp. 755–763, 2022.
  7. F. Zhu, Y. Zhang, Y. Zheng, S. Guo, B. Hua, Y. Liu, F. Wu, L. Li, J. Chen, C. Dong et al., “Design and verification of multi-functional obstacle avoidance sensor for the tianwen-1 mars probe,” Space Science Reviews, vol. 219, no. 5, p. 42, 2023.
  8. K. Chen, C. Liu, H. Chen, H. Zhang, W. Li, Z. Zou, and Z. Shi, “Rsprompter: Learning to prompt for remote sensing instance segmentation based on visual foundation model,” IEEE Transactions on Geoscience and Remote Sensing, 2024.
  9. W. Li, K. Chen, H. Chen, and Z. Shi, “Geographical knowledge-driven representation learning for remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–16, 2021.
  10. K. Chen, W. Li, J. Chen, Z. Zou, and Z. Shi, “Resolution-agnostic remote sensing scene classification with implicit neural representations,” IEEE Geoscience and Remote Sensing Letters, vol. 20, pp. 1–5, 2022.
  11. M. Längkvist, A. Kiselev, M. Alirezaie, and A. Loutfi, “Classification and segmentation of satellite orthoimagery using convolutional neural networks,” Remote Sensing, vol. 8, no. 4, 2016. [Online]. Available: https://www.mdpi.com/2072-4292/8/4/329
  12. M. Wu, C. Zhang, J. Liu, L. Zhou, and X. Li, “Towards accurate high resolution satellite image semantic segmentation,” IEEE Access, vol. PP, no. 99, pp. 1–1, 2019.
  13. M. Wang, K. Chen, L. Su, C. Yan, S. Xu, H. Zhang, P. Yuan, X. Jiang, and B. Zhang, “Rsbuilding: Towards general remote sensing image building extraction and change detection with foundation model,” arXiv preprint arXiv:2403.07564, 2024.
  14. W. Li, K. Chen, and Z. Shi, “Geographical supervision correction for remote sensing representation learning,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–20, 2022.
  15. K. Chen, X. Jiang, Y. Hu, X. Tang, Y. Gao, J. Chen, and W. Xie, “Ovarnet: Towards open-vocabulary object attribute recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 23 518–23 527.
  16. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment anything,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 4015–4026.
  17. R. M. Swan, D. Atha, H. A. Leopold, M. Gildner, S. Oij, C. Chiu, and M. Ono, “Ai4mars: A dataset for terrain-aware autonomous driving on mars,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021, pp. 1982–1991.
  18. S. Hao, Y. Zhou, and Y. Guo, “A brief survey on semantic segmentation with deep learning,” Neurocomputing, vol. 406, pp. 302–321, 2020.
  19. Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A survey,” Proceedings of the IEEE, vol. 111, no. 3, pp. 257–276, 2023.
  20. K. Chen, W. Li, S. Lei, J. Chen, X. Jiang, Z. Zou, and Z. Shi, “Continuous remote sensing image super-resolution based on context interaction in implicit function space,” IEEE Transactions on Geoscience and Remote Sensing, 2023.
  21. B. Li, Y. Shi, Z. Qi, and Z. Chen, “A survey on semantic segmentation,” in 2018 IEEE International Conference on Data Mining Workshops (ICDMW).   IEEE, 2018, pp. 1233–1240.
  22. S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image segmentation using deep learning: A survey,” IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 7, pp. 3523–3542, 2021.
  23. S. Ghosh, N. Das, I. Das, and U. Maulik, “Understanding deep learning techniques for image segmentation,” ACM computing surveys (CSUR), vol. 52, no. 4, pp. 1–35, 2019.
  24. J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 4, pp. 640–651, 2015.
  25. Y. Rao, W. Liu, J. Pu, J. Deng, and Q. Wang, “Roads detection of aerial image with fcn-crf model,” in 2018 IEEE Visual Communications and Image Processing (VCIP), 2018.
  26. S. Zhang, G. Wu, J. P. Costeiraz, and J. M. F. Mouray, “Fcn-rlstm: Deep spatio-temporal neural networks for vehicle counting in city cameras,” in IEEE International Conference on Computer Vision, 2017.
  27. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” 2015.
  28. Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: A nested u-net architecture for medical image segmentation,” 2018.
  29. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  30. B. Cheng, A. G. Schwing, and A. Kirillov, “Per-pixel classification is not all you need for semantic segmentation,” 2021.
  31. E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo, “Segformer: Simple and efficient design for semantic segmentation with transformers,” 2021.
  32. K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional networks for visual recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1904–1916, 2015.
  33. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848, 2018.
  34. S. Liu, D. Huang, and Y. Wang, “Receptive field block net for accurate and fast object detection,” 2018.
  35. H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 6230–6239.
  36. M.-H. Guo, T.-X. Xu, J.-J. Liu, Z.-N. Liu, P.-T. Jiang, T.-J. Mu, S.-H. Zhang, R. R. Martin, M.-M. Cheng, and S.-M. Hu, “Attention mechanisms in computer vision: A survey,” Computational visual media, vol. 8, no. 3, pp. 331–368, 2022.
  37. Z. Niu, G. Zhong, and H. Yu, “A review on the attention mechanism of deep learning,” Neurocomputing, vol. 452, pp. 48–62, 2021.
  38. J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation networks,” 2019.
  39. M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spatial transformer networks,” 2016.
  40. S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional block attention module,” 2018.
  41. X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” 2018.
  42. A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Neural Information Processing Systems, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:13756489
  43. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” 2021.
  44. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980–2988.
  45. C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. Jorge Cardoso, “Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations,” in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings 3.   Springer, 2017, pp. 240–248.
  46. L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder with atrous separable convolution for semantic image segmentation,” 2018.
  47. C. Yu, J. Wang, C. Gao, G. Yu, C. Shen, and N. Sang, “Context prior for scene segmentation,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 12 413–12 422.
  48. Y. Yuan, X. Chen, X. Chen, and J. Wang, “Segmentation transformer: Object-contextual representations for semantic segmentation,” 2021.
  49. D. Peng, Y. Lei, M. Hayat, Y. Guo, and W. Li, “Semantic-aware domain generalized segmentation,” in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 2584–2595.
  50. J. Li, S. Zi, R. Song, Y. Li, Y. Hu, and Q. Du, “A stepwise domain adaptive segmentation network with covariate shift alleviation for remote sensing imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2022.
  51. Q. Wan, Z. Huang, J. Lu, G. Yu, and L. Zhang, “Seaformer: Squeeze-enhanced axial transformer for mobile semantic segmentation,” 2023.
  52. H. Yan, C. Zhang, and M. Wu, “Lawin transformer: Improving semantic segmentation transformer with multi-scale representations via large window attention,” 2023.
  53. Z. Yang, X. Peng, Z. Yin, and Z. Yang, “Deeplab_v3_plus-net for image semantic segmentation with channel compression,” in 2020 IEEE 20th International Conference on Communication Technology (ICCT), 2020, pp. 1320–1324.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube