Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Rare events, time crystals and symmetry-breaking dynamical phase transitions (2404.04135v1)

Published 5 Apr 2024 in cond-mat.stat-mech

Abstract: In this PhD thesis, I investigate the properties of symmetry-breaking dynamical phase transitions that manifest in the fluctuations of time-integrated observables within classical systems. In particular, I analyze how these phase transitions impose stringent constraints on the structure of the eigenvectors of the system dynamical generator of the dynamics. Additionally, I identify a dynamical phase transition to a time-crystal phase in a model of driven-diffusive lattice gas. The study of this transition then allows the identification of the "packing-field" mechanism responsible for its emergence. This mechanism is then exploited to propose new transport models displaying time-crystal behavior.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (220)
  1. Christopher Jarzynski “Diverse phenomena, common themes” In Nat. Phys. 11.22 Nature Publishing Group, 2015, pp. 105–107 DOI: 10.1038/nphys3229
  2. P. W. Anderson “More Is Different” In Science 177.4047, 1972, pp. 393–396 DOI: 10.1126/science.177.4047.393
  3. “Statistical mechanics” In Butter worth Academic Press, 2009
  4. H. B. Callen and T. A. Welton “Irreversibility and generalized noise” In Phys. Rev. 83.1, 1951, pp. 34
  5. R. Kubo “Fluctuation-dissipation theorem” In Reports On Progress In Phys. 29, 1966, pp. 255
  6. David Chandler and Jerome K. Percus “Introduction To Modern Statistical Mechanics”, 1987 URL: https://api.semanticscholar.org/CorpusID:53128002
  7. Graham R. Fleming and Mark A. Ratner “Grand challenges in basic energy sciences” In Phys. Today 61.7, 2008, pp. 28–33 DOI: 10.1063/1.2963009
  8. H. Touchette “The large deviation approach to statistical mechanics” In Phys. Rep. 478.1-3, 2009, pp. 1 URL: http://dx.doi.org/10.1016/j.physrep.2009.05.002
  9. H. B. Callen “Thermodynamics and an Introduction to Thermostatistics” New York: John Wiley & Sons, 2nd Ed., 1985
  10. R. J. Harris, A. Rakos and G. M. Schütz “Current fluctuations in the zero-range process with open boundaries” In J. Stat. Mech., 2005, pp. P08003
  11. “Current fluctuations in stochastic lattice gases” In Phys. Rev. Lett. 94.3, 2005, pp. 030601 URL: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.94.030601
  12. “Distribution of current in nonequilibrium diffusive systems and phase transitions” In Phys. Rev. E 72.6, 2005, pp. 066110 URL: http://journals.aps.org/pre/abstract/10.1103/PhysRevE.72.066110
  13. V. Lecomte, C. Appert-Rolland and F. Wijland “Thermodynamic Formalism for Systems with Markov Dynamics” In J. Stat. Phys. 127.1, 2007, pp. 51 DOI: 10.1007/s10955-006-9254-0
  14. “Dynamical first-order phase transition in kinetically constrained models of glasses” In Phys. Rev. Lett. 98.19 APS, 2007, pp. 195702 URL: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.195702
  15. B. Derrida “Non-equilibrium steady states: fluctuations and large deviations of the density and of the current” In J. Stat. Mech. P07023 (2007) URL: http://iopscience.iop.org/article/10.1088/1742-5468/2007/07/P07023
  16. David Ruelle “Thermodynamic Formalism: The Mathematical Structure of Equilibrium Statistical Mechanics”, Cambridge Mathematical Library Cambridge: Cambridge University Press, 2004 DOI: 10.1017/CBO9780511617546
  17. “Macroscopic fluctuation theory” In Rev. Mod. Phys. 87.2, 2015, pp. 593 URL: http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.87.593
  18. “Thermodynamics of currents in nonequilibrium diffusive systems: theory and simulation” In J. Stat. Phys. 154.1-2, 2014, pp. 214 URL: http://link.springer.com/article/10.1007/s10955-013-0894-6
  19. R. M. L. Evans “Rules for Transition Rates in Nonequilibrium Steady States” In Phys. Rev. Lett. 92.15 American Physical Society, 2004, pp. 150601 DOI: 10.1103/PhysRevLett.92.150601
  20. “Nonequilibrium Microcanonical and Canonical Ensembles and Their Equivalence” In Phys. Rev. Lett. 111 American Physical Society, 2013, pp. 120601 DOI: 10.1103/PhysRevLett.111.120601
  21. V. Lecomte, C. Appert-Rolland and F. Wijland “Chaotic Properties of Systems with Markov Dynamics” Publisher: American Physical Society In Phys. Rev. Lett. 95.1, 2005, pp. 010601 DOI: 10.1103/PhysRevLett.95.010601
  22. “A numerical approach to large deviations in continuous time” In J. Stat. Mech. P03004 (2007) URL: http://iopscience.iop.org/article/10.1088/1742-5468/2007/03/P03004/meta
  23. “First-order dynamical phase transition in models of glasses: an approach based on ensembles of histories” In J. Phys. A 42.7 IOP Publishing, 2009, pp. 075007 URL: http://iopscience.iop.org/article/10.1088/1751-8113/42/7/075007
  24. B. Derrida, E. Domany and D. Mukamel “An exact solution of a one-dimensional asymmetric exclusion model with open boundaries” In J. Stat. Phys 69.3, 1992, pp. 667–687 DOI: 10.1007/BF01050430
  25. “Exact solution of a 1D asymmetric exclusion model using a matrix formulation” In J. Phys. A: Math. Gen. 26.7, 1993, pp. 1493 DOI: 10.1088/0305-4470/26/7/011
  26. “Phase transitions in an exactly soluble one-dimensional exclusion process” In J. Stat. Phys 72.1, 1993, pp. 277–296 DOI: 10.1007/BF01048050
  27. “Cumulants and large deviations of the current through non-equilibrium steady states” In Comptes Rendus Physique 8.5-6, 2007, pp. 540 URL: http://www.em-consulte.com/en/article/70105
  28. R. L. Jack and P. Sollich “Large Deviations and Ensembles of Trajectories in Stochastic Models” In Prog. Theor. Phys. Supp. 184, 2010, pp. 304–317 URL: https://doi.org/10.1143/PTPS.184.304
  29. M. C. Bañuls and J. P. Garrahan “Using Matrix Product States to Study the Dynamical Large Deviations of Kinetically Constrained Models” In Phys. Rev. Lett. 123 American Physical Society, 2019, pp. 200601 DOI: 10.1103/PhysRevLett.123.200601
  30. “Population dynamics method with a multi-canonical feedback control” In Phys. Rev. E 93, 2016, pp. 062123 URL: http://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.062123
  31. “Adaptive Sampling of Large Deviations” In J. Stat. Phys 172.6, 2018, pp. 1525–1544 DOI: 10.1007/s10955-018-2108-8
  32. Ushnish Ray, Garnet Kin-Lic Chan and David T. Limmer “Importance sampling large deviations in nonequilibrium steady states. I” In J. Chem. Phys 148.12, 2018, pp. 124120 DOI: 10.1063/1.5003151
  33. “Duality and Hidden Symmetries in Interacting Particle Systems” In J. Stat. Phys. 135, 2009, pp. 25 URL: https://link.springer.com/article/10.1007/s10955-009-9716-2
  34. C. Pérez-Espigares and P. I. Hurtado “Sampling rare events across dynamical phase transitions” In Chaos 29, 2019, pp. 083106 DOI: 10.1063/1.5091669
  35. Avishek Das and David T. Limmer “Variational control forces for enhanced sampling of nonequilibrium molecular dynamics simulations” In J. Chem. Phys 151.24, 2019, pp. 244123 DOI: 10.1063/1.5128956
  36. Dominic C. Rose, Jamie F. Mair and Juan P. Garrahan “A reinforcement learning approach to rare trajectory sampling” In New J. Phys. 23.1, 2021, pp. 013013 DOI: 10.1088/1367-2630/abd7bd
  37. “Reinforcement learning of rare diffusive dynamics” In J. Chem. Phys 155.13, 2021, pp. 134105 DOI: 10.1063/5.0057323
  38. “Fluctuations in stationary nonequilibrium states of irreversible processes” In Phys. Rev. Lett. 87.4, 2001, pp. 040601 URL: http://dx.doi.org/10.1103/PhysRevLett.87.040601
  39. “Macroscopic fluctuation theory for stationary non-equilibrium states” In J. Stat. Phys. 107.3-4, 2002, pp. 635 URL: http://link.springer.com/article/10.1023/A:1014525911391
  40. S. Ciliberto, S. Joubaud and A. Petrosyan “Fluctuations in out-of-equilibrium systems: from theory to experiment” In J. Stat. Mech. 2010.12, 2010, pp. P12003 DOI: 10.1088/1742-5468/2010/12/P12003
  41. S. Ciliberto “Experiments in Stochastic Thermodynamics: Short History and Perspectives” In Phys. Rev. X 7.2, 2017, pp. 021051 DOI: 10.1103/PhysRevX.7.021051
  42. Mauro Merolle, Juan P. Garrahan and David Chandler “Space–time thermodynamics of the glass transition” In PNAS 102.31, 2005, pp. 10837–10840 DOI: 10.1073/pnas.0504820102
  43. “Dynamic order-disorder in atomistic models of structural glass formers” In Science 323.5919 American Association for the Advancement of Science, 2009, pp. 1309 URL: http://science.sciencemag.org/content/323/5919/1309
  44. D. Chandler and J. P. Garrahan “Dynamics on the way to forming glass: bubbles in space-time.” In Annu. Rev. Phys. Chem. 61, 2010, pp. 191 URL: http://www.annualreviews.org/doi/abs/10.1146/annurev.physchem.040808.090405
  45. “Large Fluctuations and Dynamic Phase Transition in a System of Self-Propelled Particles” In Phys. Rev. Lett. 119 American Physical Society, 2017, pp. 158002 DOI: 10.1103/PhysRevLett.119.158002
  46. “Entropy production fluctuations encode collective behavior in active matter” In Phys. Rev. E 103 American Physical Society, 2021, pp. 012613 DOI: 10.1103/PhysRevE.103.012613
  47. “Collective motion in large deviations of active particles” In Phys. Rev. E 103 American Physical Society, 2021, pp. 022603 DOI: 10.1103/PhysRevE.103.022603
  48. “Stochastic interacting particle systems out of equilibrium” In J. Stat. Mech., 2007, pp. P07014 URL: http://iopscience.iop.org/article/10.1088/1742-5468/2007/07/P07014/meta
  49. Y. Baek, Y. Kafri and V. Lecomte “Dynamical symmetry breaking and phase transitions in driven diffusive systems” In Phys. Rev. Lett. 118, 2017, pp. 030604 URL: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.030604
  50. “Order and symmetry-breaking in the fluctuations of driven systems” In Phys. Rev. Lett. 119, 2017, pp. 090602 DOI: 10.1103/PhysRevLett.119.090602
  51. J. P. Garrahan and I. Lesanovsky “Thermodynamics of Quantum Jump Trajectories” In Phys. Rev. Lett. 104.16, 2010, pp. 160601 URL: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.160601
  52. “Harnessing symmetry to control quantum transport” In Adv. Phys. 67, 2018, pp. 1 URL: https://www.tandfonline.com/doi/abs/10.1080/00018732.2018.1519981?journalCode=tadp20
  53. “Theory of classical metastability in open quantum systems” In Phys. Rev. Res. 3 American Physical Society, 2021, pp. 033047 DOI: 10.1103/PhysRevResearch.3.033047
  54. P. M. Chaikin and T. C. Lubensky “Principles of condensed matter physics” Cambridge: Cambridge University Press, 2000 URL: https://www.cambridge.org/core/books/principles-of-condensed-matter-physics/70C3D677A9B5BEC4A77CBBD0A8A23E64
  55. Jozef Sznajd “Introduction to the Modern Theory of Phase Transitions” In Patterns of Symmetry Breaking, NATO Science Series Dordrecht: Springer Netherlands, 2003, pp. 139–159 DOI: 10.1007/978-94-007-1029-0_5
  56. E. Pitard, V. Lecomte and F. Van Wijland “Dynamic transition in an atomic glass former: A molecular-dynamics evidence” In Europhys. Lett. 96.5 IOP Publishing, 2011, pp. 56002 URL: http://epljournal.edpsciences.org/articles/epl/abs/2011/23/epl14011/epl14011.html
  57. “Activity statistics in a colloidal glass former: experimental evidence for a dynamical transition” In J. Chem. Phys. 148, 2018, pp. 164502 URL: https://aip.scitation.org/doi/10.1063/1.5006924
  58. “Phase transitions in trajectories of a superconducting single-electron transistor coupled to a resonator” In Phys. Rev. E 85.5 APS, 2012, pp. 051122 URL: http://journals.aps.org/pre/abstract/10.1103/PhysRevE.85.051122
  59. “Nonequilibrium current fluctuations in stochastic lattice gases” In J. Stat. Phys. 123.2, 2006, pp. 237 URL: http://link.springer.com/article/10.1007/s10955-006-9056-4
  60. A. Lazarescu “The physicist’s companion to current fluctuations: one-dimensional bulk-driven lattice gases” In J. Phys. A 48.50, 2015, pp. 503001 URL: http://iopscience.iop.org/article/10.1088/1751-8113/48/50/503001/meta
  61. O. Shpielberg, T. Nemoto and J. Caetano “Universality in dynamical phase transitions of diffusive systems” In Phys. Rev. E 98, 2018, pp. 052116 URL: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.052116s
  62. “Fluctuating hydrodynamics, current fluctuations, and hyperuniformity in boundary-driven open quantum chains” In Phys. Rev. E 96 American Physical Society, 2017, pp. 052118 DOI: 10.1103/PhysRevE.96.052118
  63. J. L. Doob “Conditional Brownian motion and the boundary limits of harmonic functions” In Bull. Soc. Math. Fr. 85, 1957, pp. 431 URL: https://eudml.org/doc/86928
  64. “Variational and optimal control representations of conditioned and driven processes” In J. Stat. Mech. P12001, 2015 URL: http://iopscience.iop.org/article/10.1088/1742-5468/2015/12/P12001/meta
  65. F. Wilczek “Quantum time crystals” In Phys. Rev. Lett. 109.16 APS, 2012, pp. 160401 DOI: 10.1103/PhysRevLett.109.160401
  66. “Classical Time Crystals” In Phys. Rev. Lett. 109.16, 2012, pp. 160402 DOI: 10.1103/PhysRevLett.109.160402
  67. Vedika Khemani, Roderich Moessner and S. L. Sondhi “A Brief History of Time Crystals” arXiv:1910.10745 [cond-mat, physics:hep-th] arXiv, 2019 DOI: 10.48550/arXiv.1910.10745
  68. P. Richerme “How to create a time crystal” In Physics 10 APS, 2017, pp. 5 URL: https://physics.aps.org/articles/v10/5
  69. P. Bruno “Impossibility of Spontaneously Rotating Time Crystals: A No-Go Theorem” In Phys. Rev. Lett. 111 American Physical Society, 2013, pp. 070402 DOI: 10.1103/PhysRevLett.111.070402
  70. P. Nozières “Time crystals: Can diamagnetic currents drive a charge density wave into rotation?” In Europhys. Lett. 103.5 IOP Publishing, 2013, pp. 57008 DOI: 10.1209/0295-5075/103/57008
  71. “Absence of Quantum Time Crystals” In Phys. Rev. Lett. 114.25, 2015, pp. 251603 DOI: 10.1103/PhysRevLett.114.251603
  72. “Phase Structure of Driven Quantum Systems” In Phys. Rev. Lett. 116.25 American Physical Society (APS), 2016, pp. 250401 DOI: 10.1103/physrevlett.116.250401
  73. C. W. Keyserlingk, V. Khemani and S. L. Sondhi “Absolute stability and spatiotemporal long-range order in Floquet systems” In Phys. Rev. B 94.8 American Physical Society (APS), 2016, pp. 085112 DOI: 10.1103/physrevb.94.085112
  74. D. V. Else, B. Bauer and C. Nayak “Floquet Time Crystals” In Phys. Rev. Lett. 117.9 American Physical Society (APS), 2016, pp. 090402 DOI: 10.1103/physrevlett.117.090402
  75. “Discrete time crystals in the absence of manifest symmetries or disorder in open quantum systems” In Phys. Rev. Lett. 122.1 APS, 2019, pp. 015701 DOI: 10.1103/PhysRevLett.122.015701
  76. “Discrete Time Crystals: Rigidity, Criticality, and Realizations” In Phys. Rev. Lett. 118.3 American Physical Society (APS), 2017, pp. 030401 DOI: 10.1103/physrevlett.118.030401
  77. “Observation of a discrete time crystal” In Nature 543.7644 Springer ScienceBusiness Media LLC, 2017, pp. 217 DOI: 10.1038/nature21413
  78. “Observation of discrete time-crystalline order in a disordered dipolar many-body system” In Nature 543.7644 Springer ScienceBusiness Media LLC, 2017, pp. 221 DOI: 10.1038/nature21426
  79. K. Nakatsugawa, T. Fujii and S. Tanda “Quantum time crystal by decoherence: Proposal with an incommensurate charge density wave ring” In Phys. Rev. B 96 American Physical Society, 2017, pp. 094308 DOI: 10.1103/PhysRevB.96.094308
  80. “Fate of a discrete time crystal in an open system” In Phys. Rev. B 95 American Physical Society, 2017, pp. 195135 DOI: 10.1103/PhysRevB.95.195135
  81. Z. Gong, R. Hamazaki and M. Ueda “Discrete Time-Crystalline Order in Cavity and Circuit QED Systems” In Phys. Rev. Lett. 120 American Physical Society, 2018, pp. 040404 DOI: 10.1103/PhysRevLett.120.040404
  82. “Shattered time: can a dissipative time crystal survive many-body correlations?” In New J. Phys. 20.12 IOP Publishing, 2018, pp. 123003 DOI: 10.1088/1367-2630/aaf18b
  83. “Dissipative discrete time crystals” In arXiv:1807.09884, 2018 URL: https://arxiv.org/abs/1807.09884
  84. “On time crystallinity in dissipative Floquet systems” In arXiv:1904.04820, 2019 URL: https://arxiv.org/abs/1904.04820
  85. “Boundary time crystals” In Phys. Rev. Lett. 121.3 APS, 2018, pp. 035301 DOI: 10.1103/PhysRevLett.121.035301
  86. M. Medenjak, B. Buča and D. Jaksch “The isolated Heisenberg magnet as a quantum time crystal” In Phys. Rev. B 102, 2020, pp. 041117 DOI: 10.1103/PhysRevB.102.041117
  87. Cameron Booker, Berislav Buča and Dieter Jaksch “Non-stationarity and dissipative time crystals: spectral properties and finite-size effects” Publisher: IOP Publishing In New Journal of Physics 22.8, 2020, pp. 085007 DOI: 10.1088/1367-2630/ababc4
  88. “Observation of a continuous time crystal” Publisher: American Association for the Advancement of Science In Science 377.6606, 2022, pp. 670–673 DOI: 10.1126/science.abo3382
  89. “Photonic metamaterial analogue of a continuous time crystal” In Nature Physics 19.77 Nature Publishing Group, 2023, pp. 986–991 DOI: 10.1038/s41567-023-02023-5
  90. “Building Continuous Time Crystals from Rare Events” In Phys. Rev. Lett. 125 American Physical Society, 2020, pp. 160601 DOI: 10.1103/PhysRevLett.125.160601
  91. C. Kipnis, C. Marchioro and E. Presutti “Heat-flow in an exactly solvable model” In J. Stat. Phys. 27.1, 1982, pp. 65 URL: http://link.springer.com/article/10.1007/BF01011740
  92. L. Bertini, D. Gabrielli and J. L. Lebowitz “Large deviations for a stochastic model of heat flow” In J. Stat. Phys. 121.5-6, 2005, pp. 843 URL: https://link.springer.com/article/10.1007/s10955-005-5527-2
  93. P. I. Hurtado and P. L. Garrido “Current fluctuations and statistics during a large deviation event in an exactly solvable transport model” In J. Stat. Mech. P02032, 2009 URL: http://iopscience.iop.org/article/10.1088/1742-5468/2009/02/P02032/meta
  94. C. Gutiérrez-Ariza and P. I. Hurtado “The kinetic exclusion process: a tale of two fields” In J. Stat. Mech. 103203, 2019 URL: https://iopscience.iop.org/article/10.1088/1742-5468/ab4587
  95. Daniel T. Gillespie “Markov Processes” San Diego: Academic Press, 1992 DOI: 10.1016/B978-0-08-091837-2.50001-6
  96. N.G. Van Kampen “Stochastic Processes in Physics and Chemistry”, North-Holland Personal Library Amsterdam: Elsevier, 2007 DOI: https://doi.org/10.1016/B978-0-444-52965-7.X5000-4
  97. “Stochastic Numerical Methods: An Introduction for Students and Scientists” John Wiley & Sons, 2014
  98. M. Doi “Second quantization representation for classical many-particle system” In J. Phys. A: Math. Gen. 9.9, 1976, pp. 1465 DOI: 10.1088/0305-4470/9/9/008
  99. G. M. Schütz “Exactly Solvable Models for Many-Body Systems Far from Equilibrium” In Phase Transitions and Critical Phenomena 19 London: Academic Press, 2001 DOI: 10.1016/S1062-7901(01)80015-X
  100. J. R. Norris “Markov Chains”, Cambridge Series in Statistical and Probabilistic Mathematics Cambridge: Cambridge University Press, 1997 DOI: 10.1017/CBO9780511810633
  101. David Freedman “Markov Chains” New York, NY: Springer, 1983 DOI: 10.1007/978-1-4612-5500-0
  102. “Nonnegative Matrices in the Mathematical Sciences” Academic Press, 1979 DOI: 10.1016/B978-0-12-092250-5.50001-1
  103. “Current fluctuations in nonequilibrium diffusive systems: An additivity principle” In Phys. Rev. Lett. 92.18, 2004, pp. 180601 URL: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.92.180601
  104. “Current large deviations for asymmetric exclusion processes with open boundaries” In J. Stat. Phys. 123.2, 2006, pp. 277 URL: http://link.springer.com/article/10.1007/s10955-006-9048-4
  105. “Current large deviations in a driven dissipative model” In J. Stat. Phys. 139.2, 2010, pp. 201 URL: http://link.springer.com/article/10.1007%2Fs10955-010-9934-7
  106. “Exact current statistics of the asymmetric simple exclusion process with open boundaries” In Phys. Rev. Lett. 109.17, 2012, pp. 170601 URL: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.109.170601
  107. “Nonequilibrium Markov processes conditioned on large deviations” In Ann. Henri Poincare 16, 2015, pp. 2005 URL: https://link.springer.com/article/10.1007%2Fs00023-014-0375-8
  108. C. Giardinà, J. Kurchan and L. Peliti “Direct evaluation of large-deviation functions” In Phys. Rev. Lett. 96.12, 2006, pp. 120603 URL: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.96.120603
  109. “Simulation of large deviation functions using population dynamics” In Modeling Simulation New Materials 1091, 2009, pp. 212
  110. “Simulating Rare Events in Dynamical Processes” In J. Stat. Phys. 145.4, 2011, pp. 787 URL: http://link.springer.com/article/10.1007%2Fs10955-011-0350-4
  111. D. Simon “Construction of a coordinate Bethe ansatz for the asymmetric simple exclusion process with open boundaries” In J. Stat. Mech. P07017 IOP Publishing, 2009 URL: https://doi.org/10.1088/1742-5468/2009/07/p07017
  112. V. Popkov, G. M. Schütz and D. Simon “ASEP on a ring conditioned on enhanced flux” In J. Stat. Mech. P10007 IOP Publishing, 2010 URL: http://dx.doi.org/10.1088/1742-5468/2010/10/P10007
  113. J. L. Doob “Classical Potential Theory and Its Probabilistic Counterpart” 262, Grundlehren der mathematischen Wissenschaften New York, NY: Springer, 1984 DOI: 10.1007/978-1-4612-5208-5
  114. R. L. Jack, I. R. Thompson and P. Sollich “Hyperuniformity and phase separation in biased ensembles of trajectories for diffusive systems” In Phys. Rev. Lett. 114.6, 2015, pp. 060601 URL: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.060601
  115. “Glassy dynamics due to a trajectory phase transition in dissipative Rydberg gases” In Phys. Rev. A 98 American Physical Society, 2018, pp. 021804(R) DOI: 10.1103/PhysRevA.98.021804
  116. Y. Baek, Y. Kafri and V. Lecomte “Dynamical phase transitions in the current distribution of driven diffusive channels” In J. Phys. A 51.10, 2018, pp. 105001 URL: http://stacks.iop.org/1751-8121/51/i=10/a=105001
  117. “Dynamical criticality in open systems: Nonperturbative physics, microscopic origin, and direct observation” In Phys. Rev. E 98 American Physical Society, 2018, pp. 060102(R) DOI: 10.1103/PhysRevE.98.060102
  118. “Dynamical phase transition to localized states in the two-dimensional random walk conditioned on partial currents” In Phys. Rev. E 104 American Physical Society, 2021, pp. 044134 DOI: 10.1103/PhysRevE.104.044134
  119. P. Chleboun, S. Grosskinsky and A. Pizzoferrato “Lower Current Large Deviations for Zero-Range Processes on a Ring” In J. Stat. Phys. 167.1, 2017, pp. 64 DOI: 10.1007/s10955-017-1740-z
  120. P. I. Hurtado and P. L. Garrido “Spontaneous Symmetry Breaking at the Fluctuating Level” In Phys. Rev. Lett. 107.18, 2011, pp. 180601 URL: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.107.180601
  121. C. P. Espigares, P. L. Garrido and P. I. Hurtado “Dynamical phase transition for current statistics in a simple driven diffusive system” In Phys. Rev. E 87.3, 2013, pp. 032115 URL: http://journals.aps.org/pre/abstract/10.1103/PhysRevE.87.032115
  122. S. Whitelam, K. Klymko and D. Mandal “Phase separation and large deviations of lattice active matter” In J. Chem. Phys. 148.15 AIP Publishing LLC, 2018, pp. 154902 DOI: https://doi.org/10.1063/1.5023403
  123. “How Dissipation Constrains Fluctuations in Nonequilibrium Liquids: Diffusion, Structure, and Biased Interactions” In Phys. Rev. X 9 American Physical Society, 2019, pp. 041026 DOI: 10.1103/PhysRevX.9.041026
  124. “A first-order dynamical transition in the displacement distribution of a driven run-and-tumble particle” In J. Stat. Mech. 2019.5 IOP Publishing, 2019, pp. 053206 DOI: 10.1088/1742-5468/ab11be
  125. “Optimizing active work: Dynamical phase transitions, collective motion, and jamming” In Phys. Rev. E 99 American Physical Society, 2019, pp. 022605 DOI: 10.1103/PhysRevE.99.022605
  126. “Efficiency of one-dimensional active transport conditioned on motility” In Phys. Rev. E 101 American Physical Society, 2020, pp. 022130 DOI: 10.1103/PhysRevE.101.022130
  127. “Work fluctuations of self-propelled particles in the phase separated state” In J. Phys. A 53.36 IOP Publishing, 2020, pp. 36LT02 DOI: https://doi.org/10.1088/1751-8121/ab8f3c
  128. E. Fodor, T. Nemoto and S. Vaikuntanathan “Dissipation controls transport and phase transitions in active fluids: mobility, diffusion and biased ensembles” In New J. Phys. 22.1 IOP Publishing, 2020, pp. 013052 DOI: 10.1088/1367-2630/ab6353
  129. J. Yan, H. Touchette and G. M. Rotskoff “Learning nonequilibrium control forces to characterize dynamical phase transitions” In Phys. Rev. E 105 American Physical Society, 2022, pp. 024115 DOI: 10.1103/PhysRevE.105.024115
  130. “Universal oscillations in counting statistics” In Proc. Natl. Acad. Sci. USA 106.25, 2009, pp. 10116 URL: http://www.pnas.org/content/106/25/10116
  131. J. P. Garrahan, A. D. Armour and I. Lesanovsky “Quantum trajectory phase transitions in the micromaser” In Phys. Rev. E 84.2 APS, 2011, pp. 021115 URL: http://journals.aps.org/pre/abstract/10.1103/PhysRevE.84.021115
  132. “Dynamical phases and intermittency of the dissipative quantum Ising model” In Phys. Rev. A 85.4, 2012, pp. 043620 URL: http://journals.aps.org/pra/abstract/10.1103/PhysRevA.85.043620
  133. “Thermodynamics of quadrature trajectories in open quantum systems” In Phys. Rev. A 86.6, 2012, pp. 063824 URL: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.86.063824
  134. “Trajectory phase transitions, Lee-Yang zeros, and high-order cumulants in full counting statistics” In Phys. Rev. Lett. 110.5, 2013, pp. 050601 URL: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.050601
  135. “Characterization of Dynamical Phase Transitions in Quantum Jump Trajectories Beyond the Properties of the Stationary State” In Phys. Rev. Lett. 110.15, 2013, pp. 150401 URL: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.150401
  136. “Full counting statistics of Andreev tunneling” In Phys. Rev. Lett. 112.3 APS, 2014, pp. 036801 URL: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.036801
  137. D. Manzano and P. I. Hurtado “Symmetry and the thermodynamics of currents in open quantum systems” In Phys. Rev. B 90.12, 2014, pp. 125138 URL: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.125138
  138. D. Manzano, M.A. Martínez-García and P.I. Hurtado “Coupled activity-current fluctuations in open quantum systems under strong symmetries” In New J. Phys. 23.7 IOP Publishing, 2021, pp. 073044 DOI: https://doi.org/10.1088/1367-2630/ac0f19
  139. B. Gaveau and L. S. Schulman “Theory of nonequilibrium first-order phase transitions for stochastic dynamics” In J. Math. Phys. 39.3, 1998, pp. 1517 DOI: 10.1063/1.532394
  140. “Stochastic processes: Time evolution, symmetries and linear response” In Phys. Rep. 88.4, 1982, pp. 207 DOI: https://doi.org/10.1016/0370-1573(82)90045-X
  141. W. Ledermann “On the asymptotic probability distribution for certain Markoff processes” In Math. Proc. Cambr. Phil. Soc. 46.4, 1950, pp. 581 Cambridge University Press DOI: https://doi.org/10.1017/S0305004100026141
  142. B. Gaveau and L. S. Schulman “Multiple phases in stochastic dynamics: Geometry and probabilities” In Phys. Rev. E 73 American Physical Society, 2006, pp. 036124 DOI: 10.1103/PhysRevE.73.036124
  143. “Spectral theory of Liouvillians for dissipative phase transitions” In Phys. Rev. A 98 American Physical Society, 2018, pp. 042118 DOI: 10.1103/PhysRevA.98.042118
  144. “The Theory of Critical Phenomena: An Introduction to the Renormalization Group” New York, NY, USA: Oxford University Press, Inc., 1992
  145. N. Tizón-Escamilla, P. I. Hurtado and P. L. Garrido “Structure of the optimal path to a fluctuation” In Phys. Rev. E 95, 2017, pp. 002100 URL: http://journals.aps.org/pre/pdf/10.1103/PhysRevE.95.002100
  146. A. Prados, A. Lasanta and P. I. Hurtado “Large Fluctuations in Driven Dissipative Media” In Phys. Rev. Lett. 107.14, 2011, pp. 140601 URL: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.107.140601
  147. A. Prados, A. Lasanta and P. I. Hurtado “Nonlinear driven diffusive systems with dissipation: Fluctuating hydrodynamics” In Phys. Rev. E 86.3, 2012, pp. 031134 URL: http://journals.aps.org/pre/abstract/10.1103/PhysRevE.86.031134
  148. P. I. Hurtado, A. Lasanta and A. Prados “Typical and rare fluctuations in nonlinear driven diffusive systems with dissipation” In Phys. Rev. E 88.2, 2013, pp. 022110 URL: http://journals.aps.org/pre/abstract/10.1103/PhysRevE.88.022110
  149. J. Gärtner “Convergence towards Burger’s equation and propagation of chaos for weakly asymmetric exclusion processes” In Stoch. Proc. Appl. 27 Elsevier, 1987, pp. 233 URL: https://www.sciencedirect.com/science/article/pii/0304414987900408
  150. A. De Masi, E. Presutti and E. Scacciatelli “The weakly asymmetric simple exclusion process” In Ann. Inst. Henri Poincaré 25.1, 1989, pp. 1 URL: http://www.numdam.org/item/AIHPB_1989__25_1_1_0
  151. H. Spohn “Large Scale Dynamics of Interacting Particles”, Theoretical and Mathematical Physics Springer Berlin Heidelberg, 2012 URL: https://www.springer.com/la/book/9783642843730
  152. R. B. Potts “Some generalized order-disorder transformations” In Mathematical proceedings of the cambridge philosophical society 48.1, 1952, pp. 106 Cambridge University Press
  153. R. J Glauber “Time-dependent statistics of the Ising model” In J. Math. Phys. 4.2 American Institute of Physics, 1963, pp. 294 DOI: https://doi.org/10.1063/1.1703954
  154. S. Marcantoni, C. Pérez-Espigares and J. P. Garrahan “Symmetry-induced fluctuation relations for dynamical observables irrespective of their behavior under time reversal” In Phys. Rev. E 101 American Physical Society, 2020, pp. 062142 URL: https://link.aps.org/doi/10.1103/PhysRevE.101.062142
  155. R. J. Baxter “Exactly solved models in statistical mechanics” Elsevier, 2016
  156. J. Zakrzewski “Crystals of time” In Physics 5 APS, 2012, pp. 116 URL: https://physics.aps.org/articles/v5/116?__hstc=13887208.23fad615fbe7758f631f836e863ee2ed.1473638400048.1473638400050.1473638400051.2&__hssc=13887208.1.1473638400051&__hsfp=1773666937
  157. N. Y. Yao and C. Nayak “Time crystals in periodically driven systems” In Phys. Today 71.9 AIP Publishing, 2018, pp. 40 DOI: 10.1063/pt.3.4020
  158. “Time crystals: a review” In Rep. Prog. Phys. 81.1 IOP Publishing, 2018, pp. 016401 DOI: 10.1088/1361-6633/aa8b38
  159. Krzysztof Sacha “Time crystals” Springer, 2020
  160. B Buča, J Tindall and D Jaksch “Non-stationary coherent quantum many-body dynamics through dissipation” In Nat. Commun. 10.1, 2019, pp. 1730 DOI: 10.1038/s41467-019-09757-y
  161. “Emergent limit cycles and time crystal dynamics in an atom-cavity system” In Phys. Rev. A 99 American Physical Society, 2019, pp. 053605 DOI: 10.1103/PhysRevA.99.053605
  162. F. Carollo, K. Brandner and I. Lesanovsky “Nonequilibrium Many-Body Quantum Engine Driven by Time-Translation Symmetry Breaking” In Phys. Rev. Lett. 125 American Physical Society, 2020, pp. 240602 DOI: 10.1103/PhysRevLett.125.240602
  163. “Exact solution of a boundary time-crystal phase transition: Time-translation symmetry breaking and non-Markovian dynamics of correlations” In Phys. Rev. A 105 American Physical Society, 2022, pp. L040202 DOI: 10.1103/PhysRevA.105.L040202
  164. R. Moessner and S. L. Sondhi “Equilibration and order in quantum Floquet matter” In Nat. Phys. 13.5 Springer ScienceBusiness Media LLC, 2017, pp. 424 DOI: 10.1038/nphys4106
  165. “Time crystallinity in dissipative Floquet systems” In Phys. Rev. Res. 2 American Physical Society, 2020, pp. 022002 DOI: 10.1103/PhysRevResearch.2.022002
  166. “Discrete Time Crystals” In Annual Review of Condensed Matter Physics 11.1, 2020, pp. 467–499 DOI: 10.1146/annurev-conmatphys-031119-050658
  167. J. Rovny, R. L. Blum and S. E. Barrett “Observation of Discrete-Time-Crystal Signatures in an Ordered Dipolar Many-Body System” In Phys. Rev. Lett. 120 American Physical Society, 2018, pp. 180603 DOI: 10.1103/PhysRevLett.120.180603
  168. “Observation of a Space-Time Crystal in a Superfluid Quantum Gas” In Phys. Rev. Lett. 121 American Physical Society, 2018, pp. 185301 DOI: 10.1103/PhysRevLett.121.185301
  169. S. Autti, V. B. Eltsov and G. E. Volovik “Observation of a Time Quasicrystal and Its Transition to a Superfluid Time Crystal” In Phys. Rev. Lett. 120 American Physical Society, pp. 215301 DOI: 10.1103/PhysRevLett.120.215301
  170. J. O’Sullivan “Signatures of discrete time crystalline order in dissipative spin ensembles” In New Journal of Physics 22.8 IOP Publishing, 2020, pp. 085001 DOI: 10.1088/1367-2630/ab9fbe
  171. A. Kyprianidis “Observation of a prethermal discrete time crystal” In Science 372.6547, 2021, pp. 1192–1196 DOI: 10.1126/science.abg8102
  172. J. Randall “Many-body–localized discrete time crystal with a programmable spin-based quantum simulator” In Science 374.6574, 2021, pp. 1474–1478 DOI: 10.1126/science.abk0603
  173. M. Xiao “Time-crystalline eigenstate order on a quantum processor” In Nature 601.7894, 2022, pp. 531–536 DOI: 10.1038/s41586-021-04257-w
  174. H. Keßler “Observation of a Dissipative Time Crystal” In Phys. Rev. Lett. 127 American Physical Society, 2021, pp. 043602 DOI: 10.1103/PhysRevLett.127.043602
  175. P. Kongkhambut “Realization of a Periodically Driven Open Three-Level Dicke Model” In Phys. Rev. Lett. 127 American Physical Society, 2021, pp. 253601 DOI: 10.1103/PhysRevLett.127.253601
  176. “Classical Stochastic Discrete Time Crystals” In arXiv:1905.08826, 2019 URL: https://arxiv.org/abs/1905.08826
  177. “Classical discrete time crystals” In Nat. Phys. 16.4, 2020, pp. 438–447 DOI: 10.1038/s41567-019-0782-3
  178. “Classical Many-Body Time Crystals” In Phys. Rev. Lett. 123 American Physical Society, 2019, pp. 124301 DOI: 10.1103/PhysRevLett.123.124301
  179. “Photonic metamaterial analogue of a continuous time crystal” In Nat. Phys. 19.7, 2023, pp. 986–991 DOI: 10.1038/s41567-023-02023-5
  180. “Singularities in large deviation functions” In J. Stat. Mech. 2015.8, 2015, pp. P08026 URL: http://stacks.iop.org/1742-5468/2015/i=8/a=P08026
  181. F. Spitzer “Interaction of Markov Processes” In Adv. Math. 5.2, 1970, pp. 246 DOI: 10.1016/0001-8708(70)90034-4
  182. B. Derrida “An exactly soluble non-equilibrium system: The asymmetric simple exclusion process” In Phys. Rep. 301.1-3, 1998, pp. 65 URL: http://www.sciencedirect.com/science/article/pii/S0370157398000064
  183. B. Derrida and J. L. Lebowitz “Exact large deviation function in the asymmetric exclusion process” In Phys. Rev. Lett. 80.2, 1998, pp. 209
  184. “The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics” In J. Phys. A 39.41, 2006, pp. 12679 URL: http://stacks.iop.org/0305-4470/39/i=41/a=S03
  185. Y. Kuramoto “Chemical Oscillations, Waves and Turbulence” Berlin: Springer, 1984 DOI: https://doi.org/10.1007/978-3-642-69689-3
  186. “Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator communities” In J. Stat. Phys. 49.3, 1987, pp. 569 DOI: 10.1007/BF01009349
  187. A. Pikovsky, M. Rosenblum and J. Kurths “Synchronization: A Universal Concept in Nonlinear Sciences” Cambridge: Cambridge University Press, 2003 URL: https://www.cambridge.org/es/academic/subjects/physics/nonlinear-science-and-fluid-dynamics/synchronization-universal-concept-nonlinear-sciences?format=PB
  188. “The Kuramoto model: A simple paradigm for synchronization phenomena” In Rev. Mod. Phys. 77.1, 2005, pp. 137 DOI: 10.1103/RevModPhys.77.137
  189. S. Kaviani and F. H. Jafarpour “Current fluctuations in a stochastic system of classical particles with next-nearest-neighbor interactions” In J. Stat. Mech. IOP Publishing, 2020, pp. 013210 DOI: 10.1088/1742-5468/ab5d0a
  190. “Classical discrete time crystals” In arXiv:1801.02628, 2018 URL: https://arxiv.org/abs/1801.02628
  191. “Fluctuating hydrodynamics and mesoscopic effects of spatial correlations in dissipative systems with conserved momentum” In New J. Phys. 17, 2015, pp. 083039 URL: https://iopscience.iop.org/article/10.1088/1367-2630/17/8/083039/meta
  192. A. Lasanta, P. I. Hurtado and A. Prados “Statistics of the dissipated energy in driven diffusive systems” In Eur. Phys. J. E 39.3, 2016, pp. 35 URL: http://link.springer.com/article/10.1140%2Fepje%2Fi2016-16035-4
  193. “Lattice models for granular-like velocity fields: hydrodynamic description” In J. Stat. Phys. 164.4 Springer, 2016, pp. 810 URL: https://link.springer.com/article/10.1007/s10955-016-1575-z
  194. Q. H. Wei, C. Bechinger and P. Leiderer “Single-file diffusion of colloids in one-dimensional channels” In Science 287.5453, 2000, pp. 625 DOI: 10.1126/science.287.5453.625
  195. C. Lutz, M. Kollmann and C. Bechinger “Single-file diffusion of colloids in one-dimensional channels” In Phys. Rev. Lett. 93.2, 2004, pp. 026001 DOI: 10.1103/PhysRevLett.93.026001
  196. K. Ladavac and D. G. Grier “Colloidal hydrodynamic coupling in concentric optical vortices” In Europhys. Lett. 70.4, 2005, pp. 548 DOI: 10.1209/epl/i2005-10022-6
  197. Y. Roichman, D. G. Grier and G. Zaslavsky “Anomalous collective dynamics in optically driven colloidal rings” In Phys. Rev. E 75 American Physical Society, 2007, pp. 020401 DOI: 10.1103/PhysRevE.75.020401
  198. Y. Roichman and D. G. Grier “Three-dimensional holographic ring traps” In Complex Light and Optical Forces 6483 SPIE, 2007, pp. 131 International Society for OpticsPhotonics DOI: 10.1117/12.701034
  199. “Optical feedback tweezers” In Optical Trapping and Optical Micromanipulation XV 10723 SPIE, 2018, pp. 282 International Society for OpticsPhotonics DOI: 10.1117/12.2323837
  200. D. G. Grier “Optical tweezers in colloid and interface science” In Curr. Opin. Colloid Interface Sci 2.3, 1997, pp. 264 DOI: https://doi.org/10.1016/S1359-0294(97)80034-9
  201. A. Ortiz-Ambriz, J. C. Gutiérrez-Vega and D. Petrov “Manipulation of dielectric particles with nondiffracting parabolic beams” In J. Opt. Soc. Am. A 31.12 OSA, 2014, pp. 2759–2762 DOI: 10.1364/JOSAA.31.002759
  202. “Adiabatic processes realized with a trapped Brownian particle” In Phys. Rev. Lett. 114.12 APS, 2015, pp. 120601 DOI: 10.1103/PhysRevLett.114.120601
  203. “Colloidal heat engines: a review” In Soft Matter 13.1 Royal Society of Chemistry, 2017, pp. 22 DOI: 10.1039/C6SM00923A
  204. J. A. Rodrigo, M. Angulo and T. Alieva “Dynamic morphing of 3D curved laser traps for all-optical manipulation of particles” In Opt. Express 26.14 OSA, 2018, pp. 18608–18620 DOI: 10.1364/OE.26.018608
  205. Hiroaki Daido “Order Function and Macroscopic Mutual Entrainment in Uniformly Coupled Limit-Cycle Oscillators” In Progress of Theoretical Physics 88.6, 1992, pp. 1213–1218 DOI: 10.1143/ptp/88.6.1213
  206. Robin Delabays “Dynamical equivalence between Kuramoto models with first- and higher-order coupling” In Chaos 29.11 American Institute of Physics, 2019, pp. 113129 DOI: 10.1063/1.5118941
  207. S. Katz, J. L. Lebowitz and H. Spohn “Nonequilibrium steady states of stochastic lattice gas models of fast ionic conductors” In J. Stat. Phys. 34.3, 1984, pp. 497–537 DOI: 10.1007/BF01018556
  208. “Minimal current phase and universal boundary layers in driven diffusive systems” In Phys. Rev. E 63 American Physical Society, 2001, pp. 056110 DOI: 10.1103/PhysRevE.63.056110
  209. P. L. Krapivsky “Dynamics of repulsion processes” In J. Stat. Mech. P06012 (2013) IOP PublishingSISSA, pp. P06012 DOI: 10.1088/1742-5468/2013/06/P06012
  210. I. Leyva “Explosive First-Order Transition to Synchrony in Networked Chaotic Oscillators” In Phys. Rev. Lett. 108 American Physical Society, 2012, pp. 168702 DOI: 10.1103/PhysRevLett.108.168702
  211. X. Hu “Exact solution for first-order synchronization transition in a generalized Kuramoto model” In Scientific Reports 4.1, 2014, pp. 7262 DOI: 10.1038/srep07262
  212. A. B. Bortz, M. H. Kalos and J. L. Lebowitz “A new algorithm for Monte Carlo simulation of Ising spin systems” In J. Comput. Phys. 17.1, 1975, pp. 10–18 DOI: 10.1016/0021-9991(75)90060-1
  213. Daniel T. Gillespie “Exact stochastic simulation of coupled chemical reactions” In J. Phys. Chem. 81.25 American Chemical Society, 1977, pp. 2340–2361 DOI: 10.1021/j100540a008
  214. M. EJ Newman and G.T. Barkema “Monte Carlo methods in statistical physics” Clarendon Press, 1999
  215. Kurt Binder and Dieter W. Heermann “Monte Carlo Simulation in Statistical Physics: An Introduction” 0, Graduate Texts in Physics Berlin, Heidelberg: Springer, 2010 DOI: 10.1007/978-3-642-03163-2
  216. Hiroaki Daido “Intrinsic fluctuations and a phase transition in a class of large populations of interacting oscillators” In J. Stat. Phys. 60.5, 1990, pp. 753–800 DOI: 10.1007/BF01025993
  217. “Finite-size scaling, dynamic fluctuations, and hyperscaling relation in the Kuramoto model” In Phys. Rev. E 92.2 American Physical Society, 2015, pp. 022122 DOI: 10.1103/PhysRevE.92.022122
  218. Michael N. Barber “Finite-size Scaling” In Phase Transitions and Critical Phenomena 8 Academic Press, 1983 URL: https://books.google.es/books?id=3c2-wwEACAAJ
  219. R. Botet, R. Jullien and P. Pfeuty “Size Scaling for Infinitely Coordinated Systems” Publisher: American Physical Society In Physical Review Letters 49.7, 1982, pp. 478–481 DOI: 10.1103/PhysRevLett.49.478
  220. “Numerical recipes 3rd edition” Cambridge, England: Cambridge University Press, 2007
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets