Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Analyzing the Influence of Geometrical Deformation on Photon Sphere and Shadow Radius: A New Analytical Approach -- Spherically Symmetric Spacetimes (2404.04046v3)

Published 5 Apr 2024 in gr-qc

Abstract: In this paper, we introduce a new approach to study the behavior of the photon sphere and shadow radius. Our method uses extended gravitational decoupling and reveals two important analytic results. First, the additional matter field alters the photon sphere radius: it increases if $g'(r_{ph}{(0)})>0$ and decreases if $g'(r_{ph}{(0)})<0$ (where $g'$ represents the derivative of a specific metric function evaluated at the original photon sphere radius). Second, the presence of the matter field can modify the black hole shadow size. If $g\left(r_{ph}{(0)}\right)>0$, the shadow shrinks, while it grows for $g\left(r_{ph}{(0)}\right)<0$. These findings provide a deeper insight into how matter distribution influences the characteristics of black holes and their observable features. Through a systematic framework and various illustrative examples, our investigation not only clarifies these fundamental aspects but also significantly enhances the theoretical framework of black hole astrophysics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. J. M. Bardeen, W. H. Press and S. A. Teukolsky, “Rotating black holes: Locally nonrotating frames, energy extraction, and scalar synchrotron radiation,” Astrophys. J. 178, 347 (1972)
  2. O. Y. Tsupko, “Deflection of light rays by a spherically symmetric black hole in a dispersive medium,” Phys. Rev. D 103, no.10, 104019 (2021) [arXiv:2102.00553 [gr-qc]].
  3. V. Perlick and O. Y. Tsupko, “Calculating black hole shadows: Review of analytical studies,” Phys. Rept. 947, 1-39 (2022) [arXiv:2105.07101 [gr-qc]].
  4. C. M. Claudel, K. S. Virbhadra and G. F. R. Ellis, “The Geometry of photon surfaces,” J. Math. Phys. 42, 818-838 (2001) [arXiv:gr-qc/0005050 [gr-qc]].
  5. S. Hod, “Spherical null geodesics of rotating Kerr black holes,” Phys. Lett. B 718, 1552-1556 (2013) [arXiv:1210.2486 [gr-qc]].
  6. F. S. Khoo and Y. C. Ong, “Lux in obscuro: Photon Orbits of Extremal Black Holes Revisited,” Class. Quant. Grav. 33, no.23, 235002 (2016) [erratum: Class. Quant. Grav. 34, no.21, 219501 (2017)] [arXiv:1605.05774 [gr-qc]].
  7. Y. Y. Decanini, A. Folacci and B. Raffaelli, “Unstable circular null geodesics of static spherically symmetric black holes, Regge poles and quasinormal frequencies,” Phys. Rev. D 81, 104039 (2010) [arXiv:1002.0121 [gr-qc]].
  8. A. A. Shoom, “Metamorphoses of a photon sphere,” Phys. Rev. D 96, no.8, 084056 (2017) [arXiv:1708.00019 [gr-qc]].
  9. C. C. Cederbaum and G. J. Galloway, “Uniqueness of photon spheres in electro-vacuum spacetimes,” Class. Quant. Grav. 33, 075006 (2016) [arXiv:1508.00355 [math.DG]].
  10. T. Johannsen, “Photon Rings around Kerr and Kerr-like Black Holes,” Astrophys. J. 777, 170 (2013) [arXiv:1501.02814 [astro-ph.HE]].
  11. E. Teo, “Spherical Photon Orbits Around a Kerr Black Hole,” Gen. Rel. Grav. 35, no.11, 1909-1926 (2003).
  12. M. Okyay and A. Övgün, “Nonlinear electrodynamics effects on the black hole shadow, deflection angle, quasinormal modes and greybody factors,” JCAP 01, no.01, 009 (2022) [arXiv:2108.07766 [gr-qc]].
  13. R. C. Pantig, L. Mastrototaro, G. Lambiase and A. Övgün, “Shadow, lensing, quasinormal modes, greybody bounds and neutrino propagation by dyonic ModMax black holes,” Eur. Phys. J. C 82, no.12, 1155 (2022) [arXiv:2208.06664 [gr-qc]].
  14. X. M. Kuang and A. Övgün, “Strong gravitational lensing and shadow constraint from M87* of slowly rotating Kerr-like black hole,” Annals Phys. 447, 169147 (2022) [arXiv:2205.11003 [gr-qc]].
  15. A. F. Zakharov, “Constraints on black hole charges in M87* and Sgr A* with the EHT observations,” [arXiv:2305.15446 [gr-qc]].
  16. A. F. Zakharov, “Constraints on a Tidal Charge of the Supermassive Black Hole in M87* with the EHT Observations in April 2017,” Universe 8, no.3, 141 (2022) [arXiv:2108.01533 [gr-qc]].
  17. C. K. Qiao, “Curvatures, photon spheres, and black hole shadows,” Phys. Rev. D 106, no.8, 084060 (2022) [arXiv:2208.01771 [gr-qc]].
  18. S. Hod, “Lower bound on the radii of black-hole photonspheres,” Phys. Rev. D 101, no.8, 084033 (2020) [arXiv:2012.03962 [gr-qc]].
  19. H. Lu and H. D. Lyu, “Schwarzschild black holes have the largest size,” Phys. Rev. D 101, no.4, 044059 (2020) [arXiv:1911.02019 [gr-qc]].
  20. K. Paithankar and S. Kolekar, “Black hole shadow and acceleration bounds for spherically symmetric spacetimes,” Phys. Rev. D 108, no.10, 104042 (2023) [arXiv:2305.07444 [gr-qc]].
  21. F. Aratore, O. Y. Tsupko and V. Perlick, “Constraining spherically symmetric metrics by the gap between photon rings,” [arXiv:2402.14733 [gr-qc]].
  22. O. Y. Tsupko, “Shape of higher-order images of equatorial emission rings around a Schwarzschild black hole: Analytical description with polar curves,” Phys. Rev. D 106, no.6, 064033 (2022) [arXiv:2208.02084 [gr-qc]].
  23. A. A. A. Abdujabbarov, L. Rezzolla and B. J. Ahmedov, “A coordinate-independent characterization of a black hole shadow,” Mon. Not. Roy. Astron. Soc. 454, no.3, 2423-2435 (2015) [arXiv:1503.09054 [gr-qc]].
  24. Z. Z. Younsi, A. Zhidenko, L. Rezzolla, R. Konoplya and Y. Mizuno, “New method for shadow calculations: Application to parametrized axisymmetric black holes,” Phys. Rev. D 94, no.8, 084025 (2016) doi:10.1103/PhysRevD.94.084025.
  25. Vitalii Vertogradov. The influence of the charge on a dynamical photon sphere, [arXiv:2311.08930 [gr-qc]]
  26. K. A. Bronnikov, “Regular magnetic black holes and monopoles from nonlinear electrodynamics,” Phys. Rev. D 63, 044005 (2001) [arXiv:gr-qc/0006014 [gr-qc]].
  27. C. M. Claudel, K. S. Virbhadra and G. F. R. Ellis, “The Geometry of photon surfaces,” J. Math. Phys. 42, 818-838 (2001) doi:10.1063/1.1308507 [arXiv:gr-qc/0005050 [gr-qc]].
  28. A. Allahyari, M. Khodadi, S. Vagnozzi and D. F. Mota, “Magnetically charged black holes from non-linear electrodynamics and the Event Horizon Telescope,” JCAP 02, 003 (2020) [arXiv:1912.08231 [gr-qc]].
  29. J. W. Moffat, “Scalar-tensor-vector gravity theory,” JCAP 03, 004 (2006) [arXiv:gr-qc/0506021 [gr-qc]].
  30. J. W. Moffat, “Black Holes in Modified Gravity (MOG),” Eur. Phys. J. C 75, no.4, 175 (2015) [arXiv:1412.5424 [gr-qc]].
Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com