Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Collective coupling of driven multilevel atoms and its effect on four-wave mixing (2404.03615v2)

Published 4 Apr 2024 in quant-ph and physics.atom-ph

Abstract: Microscopic models based on multilevel atoms are central to optimizing non-linear optical responses and the coherent control of light. These models are traditionally based on single-atom effects that are parametrically extrapolated to include collective effects, such as an enhanced response or propagation within atomic media. In this work we present a systematic analysis of the cooperative effects arising in driven systems composed of multilevel atoms coupled via a common electromagnetic environment. The analysis is based on an interplay between dressed states induced by the driving field and photon exchanges, and collective decay channels. This theory is applied to the case of four-wave mixing induced by a pair of lasers acting on an atomic pair with internal levels in the diamond configuration. The effect of inter-atomic correlations and collective decay over the photons created in this nonlinear process is then explored. The dependence of single and two-photon correlations are studied in detail for each region by varying atomic orientations and laser parameters { consistent with current experiments involving atomic gases.}Photonic correlation functions are shown to exhibit a transition from a Lorentz-like dependence on the two-photon detuning -- with general features that can be obtained in an isolated atom scheme -- to a two-peaked distribution when the dipole-dipole interactions become relevant. For weak Rabi frequencies whose value is smaller than the highest collective decay rate, the atoms are trapped inside their ground state as they approach each other. It is found that the anisotropy of the dipole-dipole interaction and its wave nature are essential to understand the behavior of the photons correlations. Signatures of these processes are identified for existing experimental realizations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. M. Alexanian and S. K. Bose, Two-photon resonance fluorescence, Phys. Rev. A 74, 063418 (2006).
  2. R. J. Bettles, S. A. Gardiner, and C. S. Adams, Enhanced optical cross section via collective coupling of atomic dipoles in a 2d array, Phys. Rev. Lett. 116, 103602 (2016).
  3. S. D. Jenkins and J. Ruostekoski, Metamaterial transparency induced by cooperative electromagnetic interactions, Phys. Rev. Lett. 111, 147401 (2013).
  4. Y. Hadad and B. Z. Steinberg, Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides, Phys. Rev. Lett. 105, 233904 (2010).
  5. Y. Hadad and B. Z. Steinberg, One way optical waveguides for matched non-reciprocal nanoantennas with dynamic beam scanning functionality, Opt. Express 21 (2013).
  6. R. Gutiérrez-Jáuregui and A. Asenjo-Garcia, Directional transport along an atomic chain, Phys. Rev. A 105, 043703 (2022).
  7. C. Joshi, F. Yang, and M. Mirhosseini, Resonance fluorescence of a chiral artificial atom, Phys. Rev. X 13, 021039 (2023).
  8. S. de Léséleuc al., Observation of a symmetry-protected topological phase of interacting bosons with rydberg atoms, Science 365, 775 (2019).
  9. G. S. al., Probing topological spin liquids on a programmable quantum simulator, Science 374, 1242 (2021).
  10. J. Eberly and N. Rehler, Dynamics of superradiant emission, Physics Letters A 29, 142 (1969).
  11. R. H. Lehmberg, Radiation from an n𝑛nitalic_n-atom system. i. general formalism, Phys. Rev. A 2, 883 (1970a).
  12. C. W. Gardiner and M. J. Collett, Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation, Phys. Rev. A 31, 3761 (1985).
  13. R. H. Lehmberg, Radiation from an n-atom system. i. general ormalism, Phys. Rev. A 2, 883 (1970b).
  14. G. S. Agarwal, Rotating-wave approximation and spontaneous emission, Phys. Rev. A 7, 1195 (1973).
  15. M. Gross and S. Haroche, Superradiance: An essay on the theory of collective spontaneous emission, Physics Reports 93, 301 (1982).
  16. J. Javanainen, Effect of state superpositions created by spontaneous emission on laser-driven transitions, Europhys. Lett. 17, 407 (1992).
  17. G. Juzeliunas and H. J. Carmichael, Systematic formulation of slow polaritons in atomic gases, Phys. Rev. A 65, 021601(R) (2002).
  18. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev.ModPhys.633 77 (2005).
  19. C. W. Gardiner, Inhibition of atomic phase decays by squeezed light: A direct effect of squeezing, Phys. Rev. Lett. 56, 1917 (1986).
  20. H. J. Carmichael, A. S. Lane, and D. F. Walls, Resonance fluorescence from an atom in a squeezed vacuum, Phys. Rev. Lett. 58, 2539 (1987).
  21. H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker–Planck Equations (Springer, Berlin Chapter VII, 1999).
  22. M. Reitz, C. Sommer, and C. Genes, Cooperative quantum phenomena in light-matter platforms, PRX Quantum 3, 010201 (2022).
  23. E. Brion, L. H. Pedersen, and K. Mølmer, Adiabatic elimination in a lambda system, Journal of Physics A: Mathematical and Theoretical 40, 1033 (2007).
  24. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007).
  25. M. S. Malcuit, D. J. Gauthier, and R. W. Boyd, Suppression of amplified spontaneous emission by the four-wave mixing process, Phys. Rev. Lett. 55, 1086 (1985).
  26. S. H. Autler and C. H. Townes, Stark effect in rapidly varying fields, Phys. Rev. 100, 703 (1955).
  27. C. N. Cohen-Tannoudji, The autler-townes effect revisited, in Amazing Light: A Volume Dedicated To Charles Hard Townes On His 80th Birthday (Springer, 1996) pp. 109–123.
  28. S. E. Anderson and G. Raithel, Ionization of rydberg atoms by standing-wave light fields, Nature Communications 4, 2967 (2013).

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube