Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Nontrivial bundles and defect operators in $n$-form gauge theories (2404.03406v2)

Published 4 Apr 2024 in hep-th

Abstract: In $(d+1)$-dimensional $1$-form nonabelian gauge theories, we classify nontrivial $0$-form bundles in $ \mathbb{R}{d} $, which yield configurations of $D(d-2j)$-branes wrapping $(d-2j)$-cycles $c_{d-2j} $ in $Dd$-branes. We construct the related defect operators $ U{(2j-1)} ( c_{d-2j} ) $, which are disorder operators carrying the $D(d-2j)$ charge. We compute the commutation relations between the defect operators and Chern-Simons operators on odd-dimensional closed manifolds, and derive the generalized Witten effect for $U{(2j-1)} ( c_{d-2j} ) $. When $c_{d-2j}$ is not exact, $ U{(2j-1)} ( c_{d-2j} ) $ and $ U{(2j-1)} (- c_{d-2j} ) $ can also combine into an electric $(2j-1)$-form global symmetry operator, where the $(2j-1)$-form is the Chern-Simons form. The dual magnetic $(d-2j)$-form global symmetry is generated by the $D(d-2j)$ charge. We also study nontrivial $1$-form bundles in $(d+1)$-dimensional $2$-form nonabelian gauge theories, where the defect operators are $\mathcal{U}{(2j)} ( c_{d-2j-1} ) $. With the field strength of the $1$-form taken as the flat connection of the $2$-form, we classify the topological sectors in $2$-form theories.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. L. Breen and W. Messing, “Differential geometry of GERBES,” Adv. Math. 198 (2005), 732, math/0106083.
  2. J. C. Baez and J. Huerta, “An Invitation to Higher Gauge Theory,” Gen. Rel. Grav. 43 (2011), 2335-2392, arXiv:1003.4485.
  3. L. Borsten, M. J. Farahani, B. Jurco, H. Kim, J. Narozny, D. Rist, C. Saemann and M. Wolf, “Higher Gauge Theory,” arXiv:2401.05275.
  4. C. Teitelboim, “Gauge Invariance for Extended Objects,” Phys. Lett. B 167 (1986), 63-68.
  5. M. Henneaux, “Uniqueness of the Freedman-Townsend interaction vertex for two form gauge fields,” Phys. Lett. B 368 (1996), 83-88, hep-th/9511145.
  6. M. Henneaux and B. Knaepen, “All consistent interactions for exterior form gauge fields,” Phys. Rev. D 56 (1997), R6076-R6080, hep-th/9706119.
  7. D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, “Generalized Global Symmetries,” JHEP 02 (2015), 172, arXiv:1412.5148.
  8. P. A. M. Dirac, “Quantised singularities in the electromagnetic field,” Proc. Roy. Soc. Lond. A 133 (1931) no.821, 60-72.
  9. P. A. M. Dirac, “The Theory of magnetic poles,” Phys. Rev. 74 (1948), 817-830.
  10. T. T. Wu and C. N. Yang, “Concept of Nonintegrable Phase Factors and Global Formulation of Gauge Fields,” Phys. Rev. D 12 (1975), 3845-3857.
  11. M. R. Douglas, “Branes within branes,” NATO Sci. Ser. C 520 (1999), 267-275, hep-th/9512077.
  12. G. ’t Hooft, “On the Phase Transition Towards Permanent Quark Confinement,” Nucl. Phys. B 138 (1978), 1-25.
  13. V. Borokhov, A. Kapustin and X. k. Wu, “Topological disorder operators in three-dimensional conformal field theory,” JHEP 11 (2002), 049, hep-th/0206054.
  14. H. Reinhardt, “On ’t Hooft’s loop operator,” Phys. Lett. B 557 (2003), 317-323, hep-th/0212264.
  15. A. Kapustin, “Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality,” Phys. Rev. D 74 (2006), 025005, hep-th/0501015.
  16. N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, “Instanton Operators in Five-Dimensional Gauge Theories,” JHEP 03 (2015), 019, arXiv:1412.2789.
  17. S. Hu, “Quantum Spectrum of BPS Instanton States in 5⁢d5𝑑5d5 italic_d Guage Theories,” arXiv:2309.16394.
  18. E. Witten, “Dyons of Charge e theta/2 pi,” Phys. Lett. B 86 (1979), 283-287.
  19. M. Li, “Boundary states of D-branes and Dy strings,” Nucl. Phys. B 460 (1996), 351-361, hep-th/9510161.
  20. S. Gukov and E. Witten, “Gauge Theory, Ramification, And The Geometric Langlands Program,” hep-th/0612073.
  21. S. Gukov and E. Witten, “Rigid Surface Operators,” Adv. Theor. Math. Phys. 14 (2010) no.1, 87-178, arXiv:0804.1561.
  22. D. Diakonov and V. Y. Petrov, “A Formula for the Wilson Loop,” Phys. Lett. B 224 (1989), 131-135.
  23. K. I. Kondo and Y. Taira, “NonAbelian Stokes theorem and quark confinement in SU(N) Yang-Mills gauge theory,” Prog. Theor. Phys. 104 (2000), 1189-1265, hep-th/9911242.
  24. R. Matsudo and K. I. Kondo, “Non-Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation and its implication to quark confinement,” Phys. Rev. D 92 (2015) no.12, 125038, arXiv:1509.04891.
  25. A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Y. S. Tyupkin, “Pseudoparticle Solutions of the Yang-Mills Equations,” Phys. Lett. B 59 (1975), 85-87.
  26. S. Grozdanov, D. M. Hofman and N. Iqbal, “Generalized global symmetries and dissipative magnetohydrodynamics,” Phys. Rev. D 95 (2017) no.9, 096003, arXiv:1610.07392.
  27. F. Benini, P. S. Hsin and N. Seiberg, “Comments on global symmetries, anomalies, and duality in (2 + 1)d,” JHEP 04 (2017), 135, arXiv:1702.07035.
  28. L. Bhardwaj and Y. Tachikawa, “On finite symmetries and their gauging in two dimensions,” JHEP 03 (2018), 189, arXiv:1704.02330.
  29. D. Gaiotto and T. Johnson-Freyd, “Symmetry Protected Topological phases and Generalized Cohomology,” JHEP 05 (2019), 007, arXiv:1712.07950.
  30. C. M. Chang, Y. H. Lin, S. H. Shao, Y. Wang and X. Yin, “Topological Defect Lines and Renormalization Group Flows in Two Dimensions,” JHEP 01 (2019), 026, arXiv:1802.04445.
  31. C. Córdova, T. T. Dumitrescu and K. Intriligator, “Exploring 2-Group Global Symmetries,” JHEP 02 (2019), 184, arXiv:1802.04790.
  32. F. Benini, C. Córdova and P. S. Hsin, “On 2-Group Global Symmetries and their Anomalies,” JHEP 03 (2019), 118, arXiv:1803.09336.
  33. P. S. Hsin, H. T. Lam and N. Seiberg, “Comments on One-Form Global Symmetries and Their Gauging in 3d and 4d,” SciPost Phys. 6 (2019) no.3, 039, arXiv:1812.04716.
  34. N. Seiberg, “Field Theories With a Vector Global Symmetry,” SciPost Phys. 8 (2020) no.4, 050, arXiv:1909.10544.
  35. D. R. Morrison, S. Schafer-Nameki and B. Willett, “Higher-Form Symmetries in 5d,” JHEP 09 (2020), 024, arXiv:2005.12296.
  36. F. Albertini, M. Del Zotto, I. García Etxebarria and S. S. Hosseini, “Higher Form Symmetries and M-theory,” JHEP 12 (2020), 203, arXiv:2005.12831.
  37. L. Bhardwaj and S. Schäfer-Nameki, “Higher-form symmetries of 6d and 5d theories,” JHEP 02 (2021), 159, arXiv:2008.09600.
  38. B. Heidenreich, J. McNamara, M. Montero, M. Reece, T. Rudelius and I. Valenzuela, “Non-invertible global symmetries and completeness of the spectrum,” JHEP 09 (2021), 203, arXiv:2104.07036.
  39. Y. Choi, C. Cordova, P. S. Hsin, H. T. Lam and S. H. Shao, “Noninvertible duality defects in 3+1 dimensions,” Phys. Rev. D 105 (2022) no.12, 125016, arXiv:2111.01139.
  40. J. Kaidi, K. Ohmori and Y. Zheng, “Kramers-Wannier-like Duality Defects in (3+1)D Gauge Theories,” Phys. Rev. Lett. 128 (2022) no.11, 111601, arXiv:2111.01141.
  41. F. Apruzzi, F. Bonetti, I. García Etxebarria, S. S. Hosseini and S. Schafer-Nameki, “Symmetry TFTs from String Theory,” Commun. Math. Phys. 402 (2023) no.1, 895-949, arXiv:2112.02092.
  42. K. Roumpedakis, S. Seifnashri and S. H. Shao, “Higher Gauging and Non-invertible Condensation Defects,” Commun. Math. Phys. 401 (2023) no.3, 3043-3107, arXiv:2204.02407.
  43. L. Bhardwaj, L. E. Bottini, S. Schafer-Nameki and A. Tiwari, “Non-invertible higher-categorical symmetries,” SciPost Phys. 14 (2023) no.1, 007, arXiv:2204.06564.
  44. Y. Choi, C. Cordova, P. S. Hsin, H. T. Lam and S. H. Shao, “Non-invertible Condensation, Duality, and Triality Defects in 3+1 Dimensions,” Commun. Math. Phys. 402 (2023) no.1, 489-542, arXiv:2204.09025.
  45. J. Kaidi, G. Zafrir and Y. Zheng, “Non-invertible symmetries of 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM and twisted compactification,” JHEP 08 (2022), 053, arXiv:2205.01104.
  46. Y. Choi, H. T. Lam and S. H. Shao, “Noninvertible Global Symmetries in the Standard Model,” Phys. Rev. Lett. 129 (2022) no.16, 161601, arXiv:2205.05086.
  47. V. Bashmakov, M. Del Zotto and A. Hasan, “On the 6d origin of non-invertible symmetries in 4d,” JHEP 09 (2023), 161, arXiv:2206.07073.
  48. L. Bhardwaj, S. Schafer-Nameki and J. Wu, “Universal Non-Invertible Symmetries,” Fortsch. Phys. 70 (2022) no.11, 2200143, arXiv:2208.05973.
  49. F. Apruzzi, I. Bah, F. Bonetti and S. Schafer-Nameki, “Noninvertible Symmetries from Holography and Branes,” Phys. Rev. Lett. 130 (2023) no.12, 121601, arXiv:2208.07373.
  50. J. J. Heckman, M. Hübner, E. Torres and H. Y. Zhang, “The Branes Behind Generalized Symmetry Operators,” Fortsch. Phys. 71 (2023) no.1, 2200180, arXiv:2209.03343.
  51. J. Kaidi, K. Ohmori and Y. Zheng, “Symmetry TFTs for Non-invertible Defects,” Commun. Math. Phys. 404 (2023) no.2, 1021-1124, arXiv:2209.11062.
  52. J. J. Heckman, M. Hubner, E. Torres, X. Yu and H. Y. Zhang, “Top down approach to topological duality defects,” Phys. Rev. D 108 (2023) no.4, 046015, arXiv:2212.09743.
  53. M. Henningson, “Commutation relations for surface operators in six-dimensional (2, 0) theory,” JHEP 03 (2001), 011, hep-th/0012070.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.