Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Berezinskii-Kosterlitz-Thouless transitions in a ferromagnetic superfluid: effects of axial magnetization (2404.03178v1)

Published 4 Apr 2024 in cond-mat.quant-gas

Abstract: An easy-plane ferromagnetic spin-1 Bose gas undergoes two Berezinskii-Kosterlitz-Thouless (BKT) transitions, associated with mass and spin superfluidity respectively. We study the effect of axial magnetization on the superfluid properties of this system. We find that nonzero axial magnetization couples mass and spin superflow, via a mechanism analogous to the Andreev-Bashkin effect present in two-component superfluids. With sufficiently large axial magnetization mass and spin superfluidity arise simultaneously. The cross-over to this phase provides a finite-temperature generalization of the zero-temperature broken-axisymmetric to easy-axis transition. We present analytic relations connecting mass and spin superfluidity with experimentally observable coherence of the three spinor components and local magnetization.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. T.-L. Ho, Spinor Bose condensates in optical traps, Phys. Rev. Lett. 81, 742 (1998).
  2. T. Ohmi and K. Machida, Bose-Einstein condensation with internal degrees of freedom in alkali atom gases, J. Phys. Soc. Jpn. 67, 1822 (1998).
  3. Y. Kawaguchi and M. Ueda, Spinor Bose–Einstein condensates, Phys. Rep. 520, 253 (2012), spinor Bose–Einstein condensates.
  4. A. Lamacraft, Quantum quenches in a spinor condensate, Phys. Rev. Lett. 98, 160404 (2007).
  5. B. Damski and W. H. Zurek, Dynamics of a quantum phase transition in a ferromagnetic Bose-Einstein condensate, Phys. Rev. Lett. 99, 130402 (2007).
  6. H. Saito, Y. Kawaguchi, and M. Ueda, Kibble-Zurek mechanism in a quenched ferromagnetic Bose-Einstein condensate, Phys. Rev. A 76, 043613 (2007).
  7. R. Barnett, A. Polkovnikov, and M. Vengalattore, Prethermalization in quenched spinor condensates, Phys. Rev. A 84, 023606 (2011).
  8. L. A. Williamson and P. B. Blakie, Universal coarsening dynamics of a quenched ferromagnetic spin-1 condensate, Phys. Rev. Lett. 116, 025301 (2016).
  9. L. A. Williamson and P. B. Blakie, Anomalous phase ordering of a quenched ferromagnetic superfluid, SciPost Phys. 7, 29 (2019).
  10. N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17, 1133 (1966).
  11. P. C. Hohenberg, Existence of long-range order in one and two dimensions, Phys. Rev. 158, 383 (1967).
  12. V. L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. classical systems, Sov. Phys. JETP 32, 493 (1971).
  13. J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C: Solid State Phys. 6, 1181 (1973).
  14. D. J. Bishop and J. D. Reppy, Study of the superfluid transition in two-dimensional He4superscriptHe4{}^{4}\mathrm{He}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPT roman_He films, Phys. Rev. Lett. 40, 1727 (1978).
  15. S. Mukerjee, C. Xu, and J. E. Moore, Topological defects and the superfluid transition of the s=1𝑠1s=1italic_s = 1 spinor condensate in two dimensions, Phys. Rev. Lett. 97, 120406 (2006).
  16. D. Podolsky, S. Chandrasekharan, and A. Vishwanath, Phase transitions of s=1𝑠1s=1italic_s = 1 spinor condensates in an optical lattice, Phys. Rev. B 80, 214513 (2009).
  17. V. Pietilä, T. P. Simula, and M. Möttönen, Finite-temperature phase transitions in quasi-two-dimensional spin-1 Bose gases, Phys. Rev. A 81, 033616 (2010).
  18. A. J. A. James and A. Lamacraft, Phase diagram of two-dimensional polar condensates in a magnetic field, Phys. Rev. Lett. 106, 140402 (2011).
  19. M. Kobayashi, Berezinskii–Kosterlitz–Thouless transition of spin-1 spinor Bose gases in the presence of the quadratic Zeeman effect, J. Phys. Soc. Jpn 88, 094001 (2019).
  20. J. Armaitis and R. A. Duine, Superfluidity and spin superfluidity in spinor Bose gases, Phys. Rev. A 95, 053607 (2017).
  21. E. B. Sonin, Spin and mass superfluidity in a ferromagnetic spin-1 Bose-Einstein condensate, Phys. Rev. B 97, 224517 (2018).
  22. K. Murata, H. Saito, and M. Ueda, Broken-axisymmetry phase of a spin-1 ferromagnetic Bose-Einstein condensate, Phys. Rev. A 75, 013607 (2007).
  23. C. W. Gardiner, J. R. Anglin, and T. I. A. Fudge, The stochastic gross-pitaevskii equation, J. Phys. B: At. Mol. Opt. Phys. 35, 1555 (2002).
  24. C. W. Gardiner and M. J. Davis, The stochastic gross–pitaevskii equation: II, J. Phys. B: At. Mol. Opt. Phys. 36, 4731 (2003).
  25. A. S. Bradley, C. W. Gardiner, and M. J. Davis, Bose-Einstein condensation from a rotating thermal cloud: Vortex nucleation and lattice formation, Phys. Rev. A 77, 033616 (2008).
  26. A. S. Bradley and P. B. Blakie, Stochastic projected Gross-Pitaevskii equation for spinor and multicomponent condensates, Phys. Rev. A 90, 023631 (2014).
  27. T.-L. Ho and V. B. Shenoy, Local spin-gauge symmetry of the Bose-Einstein condensates in atomic gases, Phys. Rev. Lett. 77, 2595 (1996).
  28. A. F. Andreev and E. P. Bashkin, Three-velocity hydrodynamics of superfluid solutions, Sov. Phys.-JETP 42, 164 (1976).
  29. D. V. Fil and S. I. Shevchenko, Nondissipative drag of superflow in a two-component Bose gas, Phys. Rev. A 72, 013616 (2005).
  30. J. Nespolo, G. E. Astrakharchik, and A. Recati, Andreev–Bashkin effect in superfluid cold gases mixtures, New J. Phys. 19, 125005 (2017).
  31. D. Romito, C. Lobo, and A. Recati, Linear response study of collisionless spin drag, Phys. Rev. Res. 3, 023196 (2021).
  32. B. V. Svistunov, E. S. Babaev, and N. V. Prokof’ev, Superfluid States of Matter (CRC Press).
  33. E. Yukawa and M. Ueda, Hydrodynamic description of spin-1 Bose-Einstein condensates, Phys. Rev. A 86, 063614 (2012).
  34. S. Uchino, M. Kobayashi, and M. Ueda, Bogoliubov theory and Lee-Huang-Yang corrections in spin-1 and spin-2 Bose-Einstein condensates in the presence of the quadratic Zeeman effect, Phys. Rev. A 81, 063632 (2010).
  35. L. M. Symes, D. Baillie, and P. B. Blakie, Static structure factors for a spin-1 Bose-Einstein condensate, Phys. Rev. A 89, 053628 (2014).
  36. P. M. Chaikin and T. C. Lubensky, Principles of condensed matter physics, Vol. 10 (Cambridge University Press, New York, 1995).
  37. F. Wegner, Spin-ordering in a planar classical Heisenberg model, Zeitschrift für Physik 206, 465 (1967).
  38. We determine the presence of algebraic decay in each of the correlation functions (14) by computing a quadratic fit ln⁡[Gνfit⁢(r)]=aν⁢ln2⁡(r)+bν⁢ln⁡(r)+cνsuperscriptsubscript𝐺𝜈fit𝑟subscript𝑎𝜈superscript2𝑟subscript𝑏𝜈𝑟subscript𝑐𝜈\ln\left[G_{\nu}^{\text{fit}}(r)\right]=a_{\nu}\ln^{2}(r)+b_{\nu}\ln(r)+c_{\nu}roman_ln [ italic_G start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fit end_POSTSUPERSCRIPT ( italic_r ) ] = italic_a start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT roman_ln start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_r ) + italic_b start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT roman_ln ( start_ARG italic_r end_ARG ) + italic_c start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT over the range 10⁢Δ⁢x<r<0.2⁢L10Δ𝑥𝑟0.2𝐿10\Delta x<r<0.2L10 roman_Δ italic_x < italic_r < 0.2 italic_L at each temperature. If at some point |aν|<0.05subscript𝑎𝜈0.05|a_{\nu}|<0.05| italic_a start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT | < 0.05 we consider the correlations to exhibit algebraic decay. To extract the associated decay exponent ηνsubscript𝜂𝜈\eta_{\nu}italic_η start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT, we compute a linear fit ln⁡[Gνfit⁢(r)]=−ην⁢ln⁡(r)+cνsuperscriptsubscript𝐺𝜈fit𝑟subscript𝜂𝜈𝑟subscript𝑐𝜈\ln\left[G_{\nu}^{\text{fit}}(r)\right]=-\eta_{\nu}\ln(r)+c_{\nu}roman_ln [ italic_G start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT start_POSTSUPERSCRIPT fit end_POSTSUPERSCRIPT ( italic_r ) ] = - italic_η start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT roman_ln ( start_ARG italic_r end_ARG ) + italic_c start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT over the same range.
  39. D. R. Nelson and J. M. Kosterlitz, Universal jump in the superfluid density of two-dimensional superfluids, Phys. Rev. Lett. 39, 1201 (1977).
  40. J. Lovegrove, M. O. Borgh, and J. Ruostekoski, Energetically stable singular vortex cores in an atomic spin-1 Bose-Einstein condensate, Phys. Rev. A 86, 013613 (2012).
  41. J. Lovegrove, M. O. Borgh, and J. Ruostekoski, Stability and internal structure of vortices in spin-1 Bose-Einstein condensates with conserved magnetization, Phys. Rev. A 93, 033633 (2016).
  42. L. A. Williamson and P. B. Blakie, Damped point-vortex model for polar-core spin vortices in a ferromagnetic spin-1 Bose-Einstein condensate, Phys. Rev. Res. 3, 013154 (2021).
  43. E. L. Pollock and D. M. Ceperley, Path-integral computation of superfluid densities, Phys. Rev. B 36, 8343 (1987).
  44. C. J. Foster, P. B. Blakie, and M. J. Davis, Vortex pairing in two-dimensional Bose gases, Phys. Rev. A 81, 023623 (2010).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.