Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 98 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Hitting the Thermal Target for Leptophilic Dark Matter (2404.02906v1)

Published 3 Apr 2024 in hep-ph

Abstract: We study future lepton collider prospects for testing predictive models of leptophilic dark matter candidates with a thermal origin. We calculate experimental milestones for testing the parameter space compatible with freeze-out and the associated collider signals at past, present, and future facilities. This analysis places new limits on such models by leveraging the utility of lepton colliders. At $e+e-$ machines, we make projections using precision $Z$-pole observables from $e+e-\to l+l- + $ missing energy signatures at LEP and future projections for FCC-ee in these channels. Additionally, a muon collider could also probe new thermal relic parameter space in this scenario via $\mu+\mu- \to X + $ missing energy where $X$ is any easy identifiable SM object. Collectively, these processes can probe much all of the parameter space for which DM direct annihilation to $l+l-$ yields the observed relic density in Higgs-like models with mass-proportional couplings to charged leptons.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (72)
  1. G. Jungman, M. Kamionkowski, and K. Griest, “Supersymmetric dark matter,” Phys. Rept. 267 (1996) 195–373, arXiv:hep-ph/9506380.
  2. P. J. Fox, R. Harnik, J. Kopp, and Y. Tsai, “LEP Shines Light on Dark Matter,” Phys. Rev. D 84 (2011) 014028, arXiv:1103.0240 [hep-ph].
  3. Y. Bai, P. J. Fox, and R. Harnik, “The Tevatron at the Frontier of Dark Matter Direct Detection,” JHEP 12 (2010) 048, arXiv:1005.3797 [hep-ph].
  4. F. Kahlhoefer, “Review of LHC Dark Matter Searches,” Int. J. Mod. Phys. A 32 no. 13, (2017) 1730006, arXiv:1702.02430 [hep-ph].
  5. H. Dreiner, M. Huck, M. Krämer, D. Schmeier, and J. Tattersall, “Illuminating Dark Matter at the ILC,” Phys. Rev. D 87 no. 7, (2013) 075015, arXiv:1211.2254 [hep-ph].
  6. G. Bernardi et al., “The Future Circular Collider: a Summary for the US 2021 Snowmass Process,” arXiv:2203.06520 [hep-ex].
  7. T. Han, S. Mukhopadhyay, and X. Wang, “Electroweak Dark Matter at Future Hadron Colliders,” Phys. Rev. D 98 no. 3, (2018) 035026, arXiv:1805.00015 [hep-ph].
  8. CLICdp Collaboration, J.-J. Blaising, P. Roloff, A. Sailer, and U. Schnoor, “Physics performance for Dark Matter searches at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 3 TeV at CLIC using mono-photons and polarised beams,” arXiv:2103.06006 [hep-ex].
  9. M. Bai et al., “C33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPT: A ”Cool” Route to the Higgs Boson and Beyond,” in Snowmass 2021. 10, 2021. arXiv:2110.15800 [hep-ex].
  10. Z. Liu, Y.-H. Xu, and Y. Zhang, “Probing dark matter particles at CEPC,” JHEP 06 (2019) 009, arXiv:1903.12114 [hep-ph].
  11. M. Cepeda et al., “Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC,” CERN Yellow Rep. Monogr. 7 (2019) 221–584, arXiv:1902.00134 [hep-ph].
  12. H. Al Ali et al., “The muon Smasher’s guide,” Rept. Prog. Phys. 85 no. 8, (2022) 084201, arXiv:2103.14043 [hep-ph].
  13. T. Han, Z. Liu, L.-T. Wang, and X. Wang, “WIMPs at High Energy Muon Colliders,” Phys. Rev. D 103 no. 7, (2021) 075004, arXiv:2009.11287 [hep-ph].
  14. T. Han, Z. Liu, L.-T. Wang, and X. Wang, “WIMP Dark Matter at High Energy Muon Colliders −--A White Paper for Snowmass 2021,” in Snowmass 2021. 3, 2022. arXiv:2203.07351 [hep-ph].
  15. S. Bottaro, D. Buttazzo, M. Costa, R. Franceschini, P. Panci, D. Redigolo, and L. Vittorio, “Closing the window on WIMP Dark Matter,” Eur. Phys. J. C 82 no. 1, (2022) 31, arXiv:2107.09688 [hep-ph].
  16. S. Bottaro, D. Buttazzo, M. Costa, R. Franceschini, P. Panci, D. Redigolo, and L. Vittorio, “The last complex WIMPs standing,” Eur. Phys. J. C 82 no. 11, (2022) 992, arXiv:2205.04486 [hep-ph].
  17. Muon g-2 Collaboration, D. P. Aguillard et al., “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm,” Phys. Rev. Lett. 131 no. 16, (2023) 161802, arXiv:2308.06230 [hep-ex].
  18. DAMIC-M Collaboration, I. Arnquist et al., “First Constraints from DAMIC-M on Sub-GeV Dark-Matter Particles Interacting with Electrons,” Phys. Rev. Lett. 130 no. 17, (2023) 171003, arXiv:2302.02372 [hep-ex].
  19. XENON Collaboration, E. Aprile et al., “Light Dark Matter Search with Ionization Signals in XENON1T,” Phys. Rev. Lett. 123 no. 25, (2019) 251801, arXiv:1907.11485 [hep-ex].
  20. XENON Collaboration, E. Aprile et al., “Emission of single and few electrons in XENON1T and limits on light dark matter,” Phys. Rev. D 106 no. 2, (2022) 022001, arXiv:2112.12116 [hep-ex].
  21. J. Drees, “Review of final LEP results, or, A Tribute to LEP,” Int. J. Mod. Phys. A 17 (2002) 3259–3283, arXiv:hep-ex/0110077.
  22. Belle-II Collaboration, I. Adachi et al., “Search for an Invisible Z’ in a Final State with Two Muons and Missing Energy at Belle II,” Phys. Rev. Lett. 130 no. 23, (2023) 231801, arXiv:2212.03066 [hep-ex].
  23. T. Lin, E. W. Kolb, and L.-T. Wang, “Probing dark matter couplings to top and bottom quarks at the LHC,” Phys. Rev. D 88 no. 6, (2013) 063510, arXiv:1303.6638 [hep-ph].
  24. E. Izaguirre, G. Krnjaic, and B. Shuve, “The Galactic Center Excess from the Bottom Up,” Phys. Rev. D 90 no. 5, (2014) 055002, arXiv:1404.2018 [hep-ph].
  25. V. Cirigliano, B. Grinstein, G. Isidori, and M. B. Wise, “Minimal flavor violation in the lepton sector,” Nucl. Phys. B 728 (2005) 121–134, arXiv:hep-ph/0507001.
  26. Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO]. [Erratum: Astron.Astrophys. 652, C4 (2021)].
  27. N. Craig, J. Galloway, and S. Thomas, “Searching for Signs of the Second Higgs Doublet,” arXiv:1305.2424 [hep-ph].
  28. G. Krnjaic, “Probing Light Thermal Dark-Matter With a Higgs Portal Mediator,” Phys. Rev. D 94 no. 7, (2016) 073009, arXiv:1512.04119 [hep-ph].
  29. P. Gondolo and G. Gelmini, “Cosmic abundances of stable particles: Improved analysis,” Nucl. Phys. B 360 (1991) 145–179.
  30. E. Izaguirre, G. Krnjaic, P. Schuster, and N. Toro, “Analyzing the Discovery Potential for Light Dark Matter,” Phys. Rev. Lett. 115 no. 25, (2015) 251301, arXiv:1505.00011 [hep-ph].
  31. A. Berlin, N. Blinov, G. Krnjaic, P. Schuster, and N. Toro, “Dark Matter, Millicharges, Axion and Scalar Particles, Gauge Bosons, and Other New Physics with LDMX,” Phys. Rev. D 99 no. 7, (2019) 075001, arXiv:1807.01730 [hep-ph].
  32. M. Fabbrichesi, E. Gabrielli, and G. Lanfranchi, “The Dark Photon,” arXiv:2005.01515 [hep-ph].
  33. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations,” JHEP 07 (2014) 079, arXiv:1405.0301 [hep-ph].
  34. BaBar Collaboration, J. P. Lees et al., “Search for a Dark Leptophilic Scalar in e+⁢e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT Collisions,” Phys. Rev. Lett. 125 no. 18, (2020) 181801, arXiv:2005.01885 [hep-ex].
  35. ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collaboration, S. Schael et al., “Precision electroweak measurements on the Z𝑍Zitalic_Z resonance,” Phys. Rept. 427 (2006) 257–454, arXiv:hep-ex/0509008.
  36. Particle Data Group Collaboration, P. A. Zyla et al., “Review of Particle Physics,” PTEP 2020 no. 8, (2020) 083C01.
  37. I. Agapov et al., “Future Circular Lepton Collider FCC-ee: Overview and Status,” in Snowmass 2021. 3, 2022. arXiv:2203.08310 [physics.acc-ph].
  38. FCC Collaboration, A. Abada et al., “FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1,” Eur. Phys. J. C 79 no. 6, (2019) 474.
  39. FCC Collaboration, A. Abada et al., “FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3,” Eur. Phys. J. ST 228 no. 4, (2019) 755–1107.
  40. FCC Collaboration, A. Abada et al., “FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2,” Eur. Phys. J. ST 228 no. 2, (2019) 261–623.
  41. J. F. Kamenik, A. Korajac, M. Szewc, M. Tammaro, and J. Zupan, “Flavor-violating Higgs and Z boson decays at a future circular lepton collider,” Phys. Rev. D 109 no. 1, (2024) L011301, arXiv:2306.17520 [hep-ph].
  42. T. S. M. Ho, X.-H. Jiang, T. H. Kwok, L. Li, and T. Liu, “Testing Lepton Flavor Universality at Future Z𝑍Zitalic_Z Factories,” arXiv:2212.02433 [hep-ph].
  43. G. I. Budker, “Accelerators and colliding beams,” Conf. Proc. C 690827 (1969) 33–39.
  44. V. V. Parkhomchuk and A. N. Skrinsky, “Ionization cooling: Physics and applications,” AIP Conference Proceedings 352 no. 1, (01, 1996) 7–9, https://pubs.aip.org/aip/acp/article-pdf/352/1/7/11394715/7_1_online.pdf. https://doi.org/10.1063/1.49355.
  45. D. Neuffer, “Principles and applications of muon cooling,” Part.Accel. . https://www.osti.gov/biblio/1156195.
  46. MICE Collaboration, T. A. Mohayai, “First Demonstration of Ionization Cooling in MICE,” in 9th International Particle Accelerator Conference. 6, 2018. arXiv:1806.01807 [physics.acc-ph].
  47. J.-P. Delahaye et al., “A Staged Muon Accelerator Facility For Neutrino and Collider Physics,” in 5th International Particle Accelerator Conference, p. WEZA02. 6, 2014. arXiv:1502.01647.
  48. M. Boscolo, J.-P. Delahaye, and M. Palmer, “The future prospects of muon colliders and neutrino factories,” Rev. Accel. Sci. Tech. 10 no. 01, (2019) 189–214, arXiv:1808.01858 [physics.acc-ph].
  49. V. D. Barger, M. S. Berger, J. F. Gunion, and T. Han, “Precision W boson and top quark mass determinations at a muon collider,” Phys. Rev. D 56 (1997) 1714–1722, arXiv:hep-ph/9702334.
  50. T. Han, Y. Ma, and K. Xie, “High energy leptonic collisions and electroweak parton distribution functions,” Phys. Rev. D 103 no. 3, (2021) L031301, arXiv:2007.14300 [hep-ph].
  51. T. Han, W. Kilian, N. Kreher, Y. Ma, J. Reuter, T. Striegl, and K. Xie, “Precision test of the muon-Higgs coupling at a high-energy muon collider,” JHEP 12 (2021) 162, arXiv:2108.05362 [hep-ph].
  52. D. Buttazzo, D. Redigolo, F. Sala, and A. Tesi, “Fusing Vectors into Scalars at High Energy Lepton Colliders,” JHEP 11 (2018) 144, arXiv:1807.04743 [hep-ph].
  53. D. Buttazzo, R. Franceschini, and A. Wulzer, “Two Paths Towards Precision at a Very High Energy Lepton Collider,” JHEP 05 (2021) 219, arXiv:2012.11555 [hep-ph].
  54. M. Forslund and P. Meade, “Precision Higgs width and couplings with a high energy muon collider,” JHEP 01 (2024) 182, arXiv:2308.02633 [hep-ph].
  55. M. Ruhdorfer, E. Salvioni, and A. Wulzer, “Invisible Higgs boson decay from forward muons at a muon collider,” Phys. Rev. D 107 no. 9, (2023) 095038, arXiv:2303.14202 [hep-ph].
  56. C. Accettura et al., “Towards a muon collider,” Eur. Phys. J. C 83 no. 9, (2023) 864, arXiv:2303.08533 [physics.acc-ph]. [Erratum: Eur.Phys.J.C 84, 36 (2024)].
  57. R. Capdevilla, D. Curtin, Y. Kahn, and G. Krnjaic, “Systematically testing singlet models for (g - 2),” JHEP 04 (2022) 129, arXiv:2112.08377 [hep-ph].
  58. Muon g-2 Collaboration, G. W. Bennett et al., “Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL,” Phys. Rev. D 73 (2006) 072003, arXiv:hep-ex/0602035.
  59. T. Aoyama et al., “The anomalous magnetic moment of the muon in the Standard Model,” Phys. Rept. 887 (2020) 1–166, arXiv:2006.04822 [hep-ph].
  60. CMD-3 Collaboration, F. V. Ignatov et al., “Measurement of the e+⁢e−→π+⁢π−→superscript𝑒superscript𝑒superscript𝜋superscript𝜋e^{+}e^{-}\to\pi^{+}\pi^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT cross section from threshold to 1.2 GeV with the CMD-3 detector,” arXiv:2302.08834 [hep-ex].
  61. G. Krnjaic et al., “A Snowmass Whitepaper: Dark Matter Production at Intensity-Frontier Experiments,” arXiv:2207.00597 [hep-ph].
  62. Y. Kahn, G. Krnjaic, N. Tran, and A. Whitbeck, “M33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPT: a new muon missing momentum experiment to probe (g -2) and dark matter at Fermilab,” JHEP 09 (2018) 153, arXiv:1804.03144 [hep-ph].
  63. Y. M. Andreev et al., “Exploration of the Muon g-2 and Light Dark Matter explanations in NA64 with the CERN SPS high energy muon beam,” arXiv:2401.01708 [hep-ex].
  64. M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “Remarks on Higgs Boson Interactions with Nucleons,” Phys. Lett. B 78 (1978) 443–446.
  65. M. Cirelli, E. Del Nobile, and P. Panci, “Tools for model-independent bounds in direct dark matter searches,” JCAP 10 (2013) 019, arXiv:1307.5955 [hep-ph].
  66. XENON Collaboration, E. Aprile et al., “First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment,” Phys. Rev. Lett. 131 no. 4, (2023) 041003, arXiv:2303.14729 [hep-ex].
  67. C. Boehm, M. J. Dolan, and C. McCabe, “A Lower Bound on the Mass of Cold Thermal Dark Matter from Planck,” JCAP 08 (2013) 041, arXiv:1303.6270 [hep-ph].
  68. K. M. Nollett and G. Steigman, “BBN And The CMB Constrain Light, Electromagnetically Coupled WIMPs,” Phys. Rev. D 89 no. 8, (2014) 083508, arXiv:1312.5725 [astro-ph.CO].
  69. G. Krnjaic and S. D. McDermott, “Implications of BBN Bounds for Cosmic Ray Upscattered Dark Matter,” Phys. Rev. D 101 no. 12, (2020) 123022, arXiv:1908.00007 [hep-ph].
  70. D. P. Finkbeiner, S. Galli, T. Lin, and T. R. Slatyer, “Searching for dark matter in the CMB: A compact parametrization of energy injection from new physics,” Physical Review D 85 no. 4, (Feb, 2012) . https://doi.org/10.1103%2Fphysrevd.85.043522.
  71. B. Batell, D. McKeen, and M. Pospelov, “Singlet Neighbors of the Higgs Boson,” JHEP 10 (2012) 104, arXiv:1207.6252 [hep-ph].
  72. CMS Collaboration, A. M. Sirunyan et al., “Measurement of the Z⁢γ*→τ⁢τ→Zsuperscript𝛾𝜏𝜏\mathrm{Z}\gamma^{*}\to\tau\tauroman_Z italic_γ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT → italic_τ italic_τ cross section in pp collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV and validation of τ𝜏\tauitalic_τ lepton analysis techniques,” Eur. Phys. J. C 78 no. 9, (2018) 708, arXiv:1801.03535 [hep-ex].
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 4 likes.