Hitting the Thermal Target for Leptophilic Dark Matter (2404.02906v1)
Abstract: We study future lepton collider prospects for testing predictive models of leptophilic dark matter candidates with a thermal origin. We calculate experimental milestones for testing the parameter space compatible with freeze-out and the associated collider signals at past, present, and future facilities. This analysis places new limits on such models by leveraging the utility of lepton colliders. At $e+e-$ machines, we make projections using precision $Z$-pole observables from $e+e-\to l+l- + $ missing energy signatures at LEP and future projections for FCC-ee in these channels. Additionally, a muon collider could also probe new thermal relic parameter space in this scenario via $\mu+\mu- \to X + $ missing energy where $X$ is any easy identifiable SM object. Collectively, these processes can probe much all of the parameter space for which DM direct annihilation to $l+l-$ yields the observed relic density in Higgs-like models with mass-proportional couplings to charged leptons.
- G. Jungman, M. Kamionkowski, and K. Griest, “Supersymmetric dark matter,” Phys. Rept. 267 (1996) 195–373, arXiv:hep-ph/9506380.
- P. J. Fox, R. Harnik, J. Kopp, and Y. Tsai, “LEP Shines Light on Dark Matter,” Phys. Rev. D 84 (2011) 014028, arXiv:1103.0240 [hep-ph].
- Y. Bai, P. J. Fox, and R. Harnik, “The Tevatron at the Frontier of Dark Matter Direct Detection,” JHEP 12 (2010) 048, arXiv:1005.3797 [hep-ph].
- F. Kahlhoefer, “Review of LHC Dark Matter Searches,” Int. J. Mod. Phys. A 32 no. 13, (2017) 1730006, arXiv:1702.02430 [hep-ph].
- H. Dreiner, M. Huck, M. Krämer, D. Schmeier, and J. Tattersall, “Illuminating Dark Matter at the ILC,” Phys. Rev. D 87 no. 7, (2013) 075015, arXiv:1211.2254 [hep-ph].
- G. Bernardi et al., “The Future Circular Collider: a Summary for the US 2021 Snowmass Process,” arXiv:2203.06520 [hep-ex].
- T. Han, S. Mukhopadhyay, and X. Wang, “Electroweak Dark Matter at Future Hadron Colliders,” Phys. Rev. D 98 no. 3, (2018) 035026, arXiv:1805.00015 [hep-ph].
- CLICdp Collaboration, J.-J. Blaising, P. Roloff, A. Sailer, and U. Schnoor, “Physics performance for Dark Matter searches at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 3 TeV at CLIC using mono-photons and polarised beams,” arXiv:2103.06006 [hep-ex].
- M. Bai et al., “C33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPT: A ”Cool” Route to the Higgs Boson and Beyond,” in Snowmass 2021. 10, 2021. arXiv:2110.15800 [hep-ex].
- Z. Liu, Y.-H. Xu, and Y. Zhang, “Probing dark matter particles at CEPC,” JHEP 06 (2019) 009, arXiv:1903.12114 [hep-ph].
- M. Cepeda et al., “Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC,” CERN Yellow Rep. Monogr. 7 (2019) 221–584, arXiv:1902.00134 [hep-ph].
- H. Al Ali et al., “The muon Smasher’s guide,” Rept. Prog. Phys. 85 no. 8, (2022) 084201, arXiv:2103.14043 [hep-ph].
- T. Han, Z. Liu, L.-T. Wang, and X. Wang, “WIMPs at High Energy Muon Colliders,” Phys. Rev. D 103 no. 7, (2021) 075004, arXiv:2009.11287 [hep-ph].
- T. Han, Z. Liu, L.-T. Wang, and X. Wang, “WIMP Dark Matter at High Energy Muon Colliders −--A White Paper for Snowmass 2021,” in Snowmass 2021. 3, 2022. arXiv:2203.07351 [hep-ph].
- S. Bottaro, D. Buttazzo, M. Costa, R. Franceschini, P. Panci, D. Redigolo, and L. Vittorio, “Closing the window on WIMP Dark Matter,” Eur. Phys. J. C 82 no. 1, (2022) 31, arXiv:2107.09688 [hep-ph].
- S. Bottaro, D. Buttazzo, M. Costa, R. Franceschini, P. Panci, D. Redigolo, and L. Vittorio, “The last complex WIMPs standing,” Eur. Phys. J. C 82 no. 11, (2022) 992, arXiv:2205.04486 [hep-ph].
- Muon g-2 Collaboration, D. P. Aguillard et al., “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm,” Phys. Rev. Lett. 131 no. 16, (2023) 161802, arXiv:2308.06230 [hep-ex].
- DAMIC-M Collaboration, I. Arnquist et al., “First Constraints from DAMIC-M on Sub-GeV Dark-Matter Particles Interacting with Electrons,” Phys. Rev. Lett. 130 no. 17, (2023) 171003, arXiv:2302.02372 [hep-ex].
- XENON Collaboration, E. Aprile et al., “Light Dark Matter Search with Ionization Signals in XENON1T,” Phys. Rev. Lett. 123 no. 25, (2019) 251801, arXiv:1907.11485 [hep-ex].
- XENON Collaboration, E. Aprile et al., “Emission of single and few electrons in XENON1T and limits on light dark matter,” Phys. Rev. D 106 no. 2, (2022) 022001, arXiv:2112.12116 [hep-ex].
- J. Drees, “Review of final LEP results, or, A Tribute to LEP,” Int. J. Mod. Phys. A 17 (2002) 3259–3283, arXiv:hep-ex/0110077.
- Belle-II Collaboration, I. Adachi et al., “Search for an Invisible Z’ in a Final State with Two Muons and Missing Energy at Belle II,” Phys. Rev. Lett. 130 no. 23, (2023) 231801, arXiv:2212.03066 [hep-ex].
- T. Lin, E. W. Kolb, and L.-T. Wang, “Probing dark matter couplings to top and bottom quarks at the LHC,” Phys. Rev. D 88 no. 6, (2013) 063510, arXiv:1303.6638 [hep-ph].
- E. Izaguirre, G. Krnjaic, and B. Shuve, “The Galactic Center Excess from the Bottom Up,” Phys. Rev. D 90 no. 5, (2014) 055002, arXiv:1404.2018 [hep-ph].
- V. Cirigliano, B. Grinstein, G. Isidori, and M. B. Wise, “Minimal flavor violation in the lepton sector,” Nucl. Phys. B 728 (2005) 121–134, arXiv:hep-ph/0507001.
- Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO]. [Erratum: Astron.Astrophys. 652, C4 (2021)].
- N. Craig, J. Galloway, and S. Thomas, “Searching for Signs of the Second Higgs Doublet,” arXiv:1305.2424 [hep-ph].
- G. Krnjaic, “Probing Light Thermal Dark-Matter With a Higgs Portal Mediator,” Phys. Rev. D 94 no. 7, (2016) 073009, arXiv:1512.04119 [hep-ph].
- P. Gondolo and G. Gelmini, “Cosmic abundances of stable particles: Improved analysis,” Nucl. Phys. B 360 (1991) 145–179.
- E. Izaguirre, G. Krnjaic, P. Schuster, and N. Toro, “Analyzing the Discovery Potential for Light Dark Matter,” Phys. Rev. Lett. 115 no. 25, (2015) 251301, arXiv:1505.00011 [hep-ph].
- A. Berlin, N. Blinov, G. Krnjaic, P. Schuster, and N. Toro, “Dark Matter, Millicharges, Axion and Scalar Particles, Gauge Bosons, and Other New Physics with LDMX,” Phys. Rev. D 99 no. 7, (2019) 075001, arXiv:1807.01730 [hep-ph].
- M. Fabbrichesi, E. Gabrielli, and G. Lanfranchi, “The Dark Photon,” arXiv:2005.01515 [hep-ph].
- J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations,” JHEP 07 (2014) 079, arXiv:1405.0301 [hep-ph].
- BaBar Collaboration, J. P. Lees et al., “Search for a Dark Leptophilic Scalar in e+e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT Collisions,” Phys. Rev. Lett. 125 no. 18, (2020) 181801, arXiv:2005.01885 [hep-ex].
- ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collaboration, S. Schael et al., “Precision electroweak measurements on the Z𝑍Zitalic_Z resonance,” Phys. Rept. 427 (2006) 257–454, arXiv:hep-ex/0509008.
- Particle Data Group Collaboration, P. A. Zyla et al., “Review of Particle Physics,” PTEP 2020 no. 8, (2020) 083C01.
- I. Agapov et al., “Future Circular Lepton Collider FCC-ee: Overview and Status,” in Snowmass 2021. 3, 2022. arXiv:2203.08310 [physics.acc-ph].
- FCC Collaboration, A. Abada et al., “FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1,” Eur. Phys. J. C 79 no. 6, (2019) 474.
- FCC Collaboration, A. Abada et al., “FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3,” Eur. Phys. J. ST 228 no. 4, (2019) 755–1107.
- FCC Collaboration, A. Abada et al., “FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2,” Eur. Phys. J. ST 228 no. 2, (2019) 261–623.
- J. F. Kamenik, A. Korajac, M. Szewc, M. Tammaro, and J. Zupan, “Flavor-violating Higgs and Z boson decays at a future circular lepton collider,” Phys. Rev. D 109 no. 1, (2024) L011301, arXiv:2306.17520 [hep-ph].
- T. S. M. Ho, X.-H. Jiang, T. H. Kwok, L. Li, and T. Liu, “Testing Lepton Flavor Universality at Future Z𝑍Zitalic_Z Factories,” arXiv:2212.02433 [hep-ph].
- G. I. Budker, “Accelerators and colliding beams,” Conf. Proc. C 690827 (1969) 33–39.
- V. V. Parkhomchuk and A. N. Skrinsky, “Ionization cooling: Physics and applications,” AIP Conference Proceedings 352 no. 1, (01, 1996) 7–9, https://pubs.aip.org/aip/acp/article-pdf/352/1/7/11394715/7_1_online.pdf. https://doi.org/10.1063/1.49355.
- D. Neuffer, “Principles and applications of muon cooling,” Part.Accel. . https://www.osti.gov/biblio/1156195.
- MICE Collaboration, T. A. Mohayai, “First Demonstration of Ionization Cooling in MICE,” in 9th International Particle Accelerator Conference. 6, 2018. arXiv:1806.01807 [physics.acc-ph].
- J.-P. Delahaye et al., “A Staged Muon Accelerator Facility For Neutrino and Collider Physics,” in 5th International Particle Accelerator Conference, p. WEZA02. 6, 2014. arXiv:1502.01647.
- M. Boscolo, J.-P. Delahaye, and M. Palmer, “The future prospects of muon colliders and neutrino factories,” Rev. Accel. Sci. Tech. 10 no. 01, (2019) 189–214, arXiv:1808.01858 [physics.acc-ph].
- V. D. Barger, M. S. Berger, J. F. Gunion, and T. Han, “Precision W boson and top quark mass determinations at a muon collider,” Phys. Rev. D 56 (1997) 1714–1722, arXiv:hep-ph/9702334.
- T. Han, Y. Ma, and K. Xie, “High energy leptonic collisions and electroweak parton distribution functions,” Phys. Rev. D 103 no. 3, (2021) L031301, arXiv:2007.14300 [hep-ph].
- T. Han, W. Kilian, N. Kreher, Y. Ma, J. Reuter, T. Striegl, and K. Xie, “Precision test of the muon-Higgs coupling at a high-energy muon collider,” JHEP 12 (2021) 162, arXiv:2108.05362 [hep-ph].
- D. Buttazzo, D. Redigolo, F. Sala, and A. Tesi, “Fusing Vectors into Scalars at High Energy Lepton Colliders,” JHEP 11 (2018) 144, arXiv:1807.04743 [hep-ph].
- D. Buttazzo, R. Franceschini, and A. Wulzer, “Two Paths Towards Precision at a Very High Energy Lepton Collider,” JHEP 05 (2021) 219, arXiv:2012.11555 [hep-ph].
- M. Forslund and P. Meade, “Precision Higgs width and couplings with a high energy muon collider,” JHEP 01 (2024) 182, arXiv:2308.02633 [hep-ph].
- M. Ruhdorfer, E. Salvioni, and A. Wulzer, “Invisible Higgs boson decay from forward muons at a muon collider,” Phys. Rev. D 107 no. 9, (2023) 095038, arXiv:2303.14202 [hep-ph].
- C. Accettura et al., “Towards a muon collider,” Eur. Phys. J. C 83 no. 9, (2023) 864, arXiv:2303.08533 [physics.acc-ph]. [Erratum: Eur.Phys.J.C 84, 36 (2024)].
- R. Capdevilla, D. Curtin, Y. Kahn, and G. Krnjaic, “Systematically testing singlet models for (g - 2),” JHEP 04 (2022) 129, arXiv:2112.08377 [hep-ph].
- Muon g-2 Collaboration, G. W. Bennett et al., “Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL,” Phys. Rev. D 73 (2006) 072003, arXiv:hep-ex/0602035.
- T. Aoyama et al., “The anomalous magnetic moment of the muon in the Standard Model,” Phys. Rept. 887 (2020) 1–166, arXiv:2006.04822 [hep-ph].
- CMD-3 Collaboration, F. V. Ignatov et al., “Measurement of the e+e−→π+π−→superscript𝑒superscript𝑒superscript𝜋superscript𝜋e^{+}e^{-}\to\pi^{+}\pi^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT cross section from threshold to 1.2 GeV with the CMD-3 detector,” arXiv:2302.08834 [hep-ex].
- G. Krnjaic et al., “A Snowmass Whitepaper: Dark Matter Production at Intensity-Frontier Experiments,” arXiv:2207.00597 [hep-ph].
- Y. Kahn, G. Krnjaic, N. Tran, and A. Whitbeck, “M33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPT: a new muon missing momentum experiment to probe (g -2) and dark matter at Fermilab,” JHEP 09 (2018) 153, arXiv:1804.03144 [hep-ph].
- Y. M. Andreev et al., “Exploration of the Muon g-2 and Light Dark Matter explanations in NA64 with the CERN SPS high energy muon beam,” arXiv:2401.01708 [hep-ex].
- M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “Remarks on Higgs Boson Interactions with Nucleons,” Phys. Lett. B 78 (1978) 443–446.
- M. Cirelli, E. Del Nobile, and P. Panci, “Tools for model-independent bounds in direct dark matter searches,” JCAP 10 (2013) 019, arXiv:1307.5955 [hep-ph].
- XENON Collaboration, E. Aprile et al., “First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment,” Phys. Rev. Lett. 131 no. 4, (2023) 041003, arXiv:2303.14729 [hep-ex].
- C. Boehm, M. J. Dolan, and C. McCabe, “A Lower Bound on the Mass of Cold Thermal Dark Matter from Planck,” JCAP 08 (2013) 041, arXiv:1303.6270 [hep-ph].
- K. M. Nollett and G. Steigman, “BBN And The CMB Constrain Light, Electromagnetically Coupled WIMPs,” Phys. Rev. D 89 no. 8, (2014) 083508, arXiv:1312.5725 [astro-ph.CO].
- G. Krnjaic and S. D. McDermott, “Implications of BBN Bounds for Cosmic Ray Upscattered Dark Matter,” Phys. Rev. D 101 no. 12, (2020) 123022, arXiv:1908.00007 [hep-ph].
- D. P. Finkbeiner, S. Galli, T. Lin, and T. R. Slatyer, “Searching for dark matter in the CMB: A compact parametrization of energy injection from new physics,” Physical Review D 85 no. 4, (Feb, 2012) . https://doi.org/10.1103%2Fphysrevd.85.043522.
- B. Batell, D. McKeen, and M. Pospelov, “Singlet Neighbors of the Higgs Boson,” JHEP 10 (2012) 104, arXiv:1207.6252 [hep-ph].
- CMS Collaboration, A. M. Sirunyan et al., “Measurement of the Zγ*→ττ→Zsuperscript𝛾𝜏𝜏\mathrm{Z}\gamma^{*}\to\tau\tauroman_Z italic_γ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT → italic_τ italic_τ cross section in pp collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV and validation of τ𝜏\tauitalic_τ lepton analysis techniques,” Eur. Phys. J. C 78 no. 9, (2018) 708, arXiv:1801.03535 [hep-ex].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.