Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

On-line conformalized neural networks ensembles for probabilistic forecasting of day-ahead electricity prices (2404.02722v2)

Published 3 Apr 2024 in cs.LG

Abstract: Probabilistic electricity price forecasting (PEPF) is subject of increasing interest, following the demand for proper quantification of prediction uncertainty, to support the operation in complex power markets with increasing share of renewable generation. Distributional neural networks ensembles have been recently shown to outperform state of the art PEPF benchmarks. Still, they require critical reliability enhancements, as fail to pass the coverage tests at various steps on the prediction horizon. In this work, we propose a novel approach to PEPF, extending the state of the art neural networks ensembles based methods through conformal inference based techniques, deployed within an on-line recalibration procedure. Experiments have been conducted on multiple market regions, achieving day-ahead forecasts with improved hourly coverage and stable probabilistic scores.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. doi:https://doi.org/10.1016/j.rser.2017.05.234. URL https://www.sciencedirect.com/science/article/pii/S1364032117308808
  2. doi:https://doi.org/10.1016/j.energy.2013.02.030. URL https://www.sciencedirect.com/science/article/pii/S0360544213001448
  3. doi:https://doi.org/10.1016/j.apenergy.2018.03.084. URL https://www.sciencedirect.com/science/article/pii/S0306261918304227
  4. doi:https://doi.org/10.1016/j.apenergy.2021.116983. URL https://www.sciencedirect.com/science/article/pii/S0306261921004529
  5. doi:https://doi.org/10.1016/j.ijforecast.2022.05.011. URL https://www.sciencedirect.com/science/article/pii/S0169207022000711
  6. doi:https://doi.org/10.1016/j.apenergy.2022.119182. URL https://www.sciencedirect.com/science/article/pii/S0306261922005542
  7. doi:https://doi.org/10.1016/j.eneco.2021.105742. URL https://www.sciencedirect.com/science/article/pii/S0140988321005879
  8. doi:https://doi.org/10.1016/j.eneco.2023.107241. URL https://www.sciencedirect.com/science/article/pii/S0140988323007399
  9. doi:https://doi.org/10.1016/j.apenergy.2022.118905. URL https://www.sciencedirect.com/science/article/pii/S0306261922003300
  10. doi:https://doi.org/10.1016/j.apenergy.2022.118752. URL https://www.sciencedirect.com/science/article/pii/S0306261922002057
  11. doi:https://doi.org/10.1016/j.epsr.2020.106788. URL https://www.sciencedirect.com/science/article/pii/S0378779620305915
  12. doi:https://doi.org/10.1016/j.ijforecast.2014.08.008. URL https://www.sciencedirect.com/science/article/pii/S0169207014001083
  13. doi:https://doi.org/10.1016/j.cosrev.2020.100356. URL https://www.sciencedirect.com/science/article/pii/S1574013720304561
  14. doi:10.1109/OAJPE.2020.3029979.
  15. doi:https://doi.org/10.1016/j.apenergy.2021.118296. URL https://www.sciencedirect.com/science/article/pii/S0306261921015555
  16. doi:10.1038/nature14539.
  17. doi:https://doi.org/10.1016/j.neucom.2021.05.103. URL https://www.sciencedirect.com/science/article/pii/S0925231221010997
  18. doi:https://doi.org/10.1016/j.apenergy.2020.116405. URL https://www.sciencedirect.com/science/article/pii/S0306261920317748
  19. doi:https://doi.org/10.1016/j.apenergy.2019.05.068. URL https://www.sciencedirect.com/science/article/pii/S0306261919309237
  20. doi:https://doi.org/10.1016/j.apenergy.2018.02.069. URL https://www.sciencedirect.com/science/article/pii/S030626191830196X
  21. doi:10.1109/MPE.2022.3150809.
  22. doi:https://doi.org/10.1016/j.ijforecast.2022.03.001. URL https://www.sciencedirect.com/science/article/pii/S0169207022000413
  23. doi:https://doi.org/10.1016/j.eneco.2023.106602. URL https://www.sciencedirect.com/science/article/pii/S0140988323001007
  24. doi:10.1109/TPWRS.2023.3235193.
  25. doi:https://doi.org/10.1016/j.apenergy.2023.121370. URL https://www.sciencedirect.com/science/article/pii/S0306261923007341
  26. doi:https://doi.org/10.1016/j.eneco.2023.106843. URL https://www.sciencedirect.com/science/article/pii/S0140988323003419
  27. doi:https://doi.org/10.1016/j.ijforecast.2020.09.006. URL https://www.sciencedirect.com/science/article/pii/S0169207020301473
  28. doi:10.1109/CoDIT49905.2020.9263898.
  29. doi:https://doi.org/10.1016/j.ecoinf.2021.101489. URL https://www.sciencedirect.com/science/article/pii/S1574954121002806
  30. arXiv:2107.07511.
  31. arXiv:2307.16895.
  32. doi:10.3390/forecast5010003. URL https://www.mdpi.com/2571-9394/5/1/3
  33. doi:10.3150/21-BEJ1447. URL https://doi.org/10.3150/21-BEJ1447
  34. doi:10.1109/TPAMI.2023.3272339.
  35. arXiv:2103.00083.
  36. doi:https://doi.org/10.1016/j.ijforecast.2022.11.005. URL https://www.sciencedirect.com/science/article/pii/S0169207022001480
  37. arXiv:https://doi.org/10.1287/mnsc.1120.1667, doi:10.1287/mnsc.1120.1667. URL https://doi.org/10.1287/mnsc.1120.1667
  38. arXiv:1412.6980.
  39. doi:https://doi.org/10.1016/j.apenergy.2021.118341. URL https://www.sciencedirect.com/science/article/pii/S0306261921015907
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.