Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the reduction of Linear Parameter-Varying State-Space models (2404.01871v1)

Published 2 Apr 2024 in eess.SY and cs.SY

Abstract: This paper presents an overview and comparative study of the state of the art in State-Order Reduction (SOR) and Scheduling Dimension Reduction (SDR) for Linear Parameter-Varying (LPV) State-Space (SS) models, comparing and benchmarking their capabilities, limitations and performance. The use case chosen for these studies is an interconnected network of nonlinear coupled mass spring damper systems with three different configurations, where some spring coefficients are described by arbitrary user-defined static nonlinear functions. For SOR, the following methods are compared: Linear Time-Invariant (LTI), LPV and LFR-based balanced reductions, moment matching and parameter-varying oblique projection. For SDR, the following methods are compared: Principal Component Analysis (PCA), trajectory PCA, Kernel PCA and LTI balanced truncation, autoencoders and deep neural network. The comparison reveals the most suitable reduction methods for the different benchmark configurations, from which we provide use case SOR and SDR guidelines that can be used to choose the best reduction method for a given LPV-SS model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. C. Hoffmann and H. Werner, “A Survey of Linear Parameter-Varying Control Applications Validated by Experiments or High-Fidelity Simulations,” IEEE Transactions on Control Systems Technology, vol. 23, no. 2, pp. 416–433, Mar. 2015.
  2. A. Kwiatkowski, M.-T. Boll, and H. Werner, “Automated Generation and Assessment of Affine LPV Models,” in Proceedings of the 45th IEEE Conference on Decision and Control.   San Diego, CA, USA: IEEE, 2006, pp. 6690–6695.
  3. J. De Caigny, J. F. Camino, and J. Swevers, “Interpolation-Based Modeling of MIMO LPV Systems,” IEEE Transactions on Control Systems Technology, vol. 19, no. 1, pp. 46–63, Jan. 2011.
  4. A. Sadeghzadeh, B. Sharif, and R. Tóth, “Affine linear parameter-varying embedding of non-linear models with improved accuracy and minimal overbounding,” IET Control Theory & Applications, vol. 14, no. 20, pp. 3363–3373, Dec. 2020.
  5. A. Sadeghzadeh and P.-L. Garoche, “Autoencoder Neural Networks for LPV Embedding of Nonlinear Systems,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 9062–9067, 2023.
  6. B. Moore, “Principal component analysis in linear systems: Controllability, observability, and model reduction,” IEEE Transactions on Automatic Control, vol. 26, no. 1, pp. 17–32, Feb. 1981.
  7. G. Wood, P. Goddard, and K. Glover, “Approximation of linear parameter-varying systems,” in Proceedings of 35th IEEE Conference on Decision and Control, vol. 1, Kobe, Japan, 1996, pp. 406–411.
  8. C. Beck, “Coprime factors reduction methods for linear parameter varying and uncertain systems,” Systems & Control Letters, vol. 55, no. 3, pp. 199–213, Mar. 2006.
  9. M. Bastug, M. Petreczky, R. Toth, R. Wisniewski, J. Leth, and D. Efimov, “Moment matching based model reduction for LPV state-space models,” in 2015 54th IEEE Conference on Decision and Control (CDC).   Osaka: IEEE, Dec. 2015, pp. 5334–5339.
  10. J. Theis, P. Seiler, and H. Werner, “LPV Model Order Reduction by Parameter-Varying Oblique Projection,” IEEE Transactions on Control Systems Technology, vol. 26, no. 3, pp. 773–784, May 2018.
  11. A. Kwiatkowski and H. Werner, “PCA-Based Parameter Set Mappings for LPV Models With Fewer Parameters and Less Overbounding,” IEEE Transactions on Control Systems Technology, vol. 16, no. 4, pp. 781–788, Jul. 2008.
  12. S. Z. Rizvi, J. Mohammadpour, R. Toth, and N. Meskin, “A Kernel-Based PCA Approach to Model Reduction of Linear Parameter-Varying Systems,” IEEE Transactions on Control Systems Technology, vol. 24, no. 5, pp. 1883–1891, Sep. 2016.
  13. S. Z. Rizvi, F. Abbasi, and J. M. Velni, “Model Reduction in Linear Parameter-Varying Models using Autoencoder Neural Networks,” in 2018 Annual American Control Conference (ACC).   Milwaukee, WI: IEEE, Jun. 2018, pp. 6415–6420.
  14. P. Koelewijn and R. Toth, “Scheduling Dimension Reduction of LPV Models - A Deep Neural Network Approach,” in 2020 American Control Conference (ACC).   IEEE, Jul. 2020, pp. 1111–1117.
  15. R. Tóth, “Modeling and Identification of Linear Parameter-Varying Systems: an Orthonormal Basis Function Approach,” Ph.D. dissertation, Delft Center for Systems and Control (DCSC), Delft University of Technology, 2008.
  16. MathWorks, “Reduced Order Modeling of a Nonlinear Dynamical System as an Identified Linear Parameter Varying Model,” 2023.
  17. P. den Boef, P. B. Cox, and R. Tóth, “LPVcore: MATLAB Toolbox for LPV Modelling, Identification and Control,” 2021.
  18. MathWorks, “Deep Learning Toolbox version: 23.2 (R2023b),” Natick, Massachusetts, United States, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.