Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model reduction for LPV systems based on approximate modal decomposition (1609.06948v1)

Published 22 Sep 2016 in cs.SY

Abstract: The paper presents a novel model order reduction technique for large-scale linear parameter varying (LPV) systems. The approach is based on decoupling the original dynamics into smaller dimensional LPV subsystems that can be independently reduced by parameter varying reduction methods. The decomposition starts with the construction of a modal transformation that separates the modal subsystems. Hierarchical clustering is applied then to collect the dynamically similar modal subsystems into larger groups. The subsystems formed from the groups are then independently reduced. This approach substantially differs from most of the previously proposed LPV model reduction techniques, since it performs manipulations on the LPV model and not on a set of linear time-invariant (LTI) models defined at fixed scheduling parameter values. Therefore the model interpolation, which is the most challenging part of most reduction techniques, is avoided. The applicability of the developed algorithm is thoroughly investigated and demonstrated by numerical case studies.

Citations (26)

Summary

We haven't generated a summary for this paper yet.