Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Synthesizing Control Lyapunov-Value Functions for High-Dimensional Systems Using System Decomposition and Admissible Control Sets (2404.01829v1)

Published 2 Apr 2024 in math.OC, cs.SY, and eess.SY

Abstract: Control Lyapunov functions (CLFs) play a vital role in modern control applications, but finding them remains a problem. Recently, the control Lyapunov-value function (CLVF) and robust CLVF have been proposed as solutions for nonlinear time-invariant systems with bounded control and disturbance. However, the CLVF suffers from the ''curse of dimensionality,'' which hinders its application to practical high-dimensional systems. In this paper, we propose a method to decompose systems of a particular coupled nonlinear structure, in order to solve for the CLVF in each low-dimensional subsystem. We then reconstruct the full-dimensional CLVF and provide sufficient conditions for when this reconstruction is exact. Moreover, a point-wise optimal controller can be obtained using a quadratic program. We also show that when the exact reconstruction is impossible, the subsystems' CLVFs and their ``admissible control sets'' can be used to generate a Lipschitz continuous CLF. We provide several numerical examples to validate the theory and show computational efficiency.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. E. D. Sontag, “A ‘universal’ construction of Artstein’s theorem on nonlinear stabilization,” Systems & control letters, 1989.
  2. R. A. Freeman and J. A. Primbs, “Control lyapunov functions: New ideas from an old source,” in Conf. on Decision and Control, 1996.
  3. F. Camilli, L. Grüne, and F. Wirth, “Control Lyapunov functions and Zubov’s method,” SIAM Journal on Control and Optimization, 2008.
  4. P. Ogren, M. Egerstedt, and X. Hu, “A control lyapunov function approach to multi-agent coordination,” in Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228), vol. 2.   IEEE, 2001, pp. 1150–1155.
  5. Z. Artstein, “Stabilization with relaxed controls,” Nonlinear Analysis: Theory, Methods & Applications, 1983.
  6. Z. Gong, M. Zhao, T. Bewley, and S. Herbert, “Constructing control lyapunov-value functions using hamilton-jacobi reachability analysis,” IEEE Control Systems Letters, vol. 7, pp. 925–930, 2022.
  7. Z. Gong and S. Herbert, “Robust control lyapunov-value functions for nonlinear disturbed systems,” arXiv preprint arXiv:2403.03455, 2024.
  8. L. C. Evans and P. E. Souganidis, “Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations,” Indiana University Mathematics Journal, 1984.
  9. S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi reachability: A brief overview and recent advances,” in Conference on Decision and Control.   IEEE, 2017.
  10. J. F. Fisac, N. F. Lugovoy, V. Rubies-Royo, S. Ghosh, and C. J. Tomlin, “Bridging hamilton-jacobi safety analysis and reinforcement learning,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 8550–8556.
  11. S. Bansal and C. J. Tomlin, “Deepreach: A deep learning approach to high-dimensional reachability,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 1817–1824.
  12. M. Chen, S. Herbert, and C. J. Tomlin, “Exact and efficient hamilton-jacobi guaranteed safety analysis via system decomposition,” in Int. Conf. on Robot. and Automat.   IEEE, 2017.
  13. M. Chen, S. L. Herbert, M. S. Vashishtha, S. Bansal, and C. J. Tomlin, “Decomposition of reachable sets and tubes for a class of nonlinear systems,” Trans. on Automatic Control, vol. 63, no. 11, 2018.
  14. S. L. Herbert, S. Bansal, S. Ghosh, and C. J. Tomlin, “Reachability-based safety guarantees using efficient initializations,” in Conf. on Decision and Control.   IEEE, 2019.
  15. J. Liu, P. Zhao, Z. Gan, M. Johnson-Roberson, and R. Vasudevan, “Leveraging the template and anchor framework for safe, online robotic gait design,” in 2020 ICRA, 2020.
  16. P. Holmes, S. Kousik, B. Zhang, D. Raz, C. Barbalata, M. Johnson-Roberson, and R. Vasudevan, “Reachable sets for safe, real-time manipulator trajectory design,” 2020.
  17. C. He, Z. Gong, M. Chen, and S. Herbert, “Efficient and guaranteed hamilton–jacobi reachability via self-contained subsystem decomposition and admissible control sets,” Control Systems Letters, 2023.
  18. I. M. Mitchell and J. A. Templeton, “A toolbox of Hamilton-Jacobi solvers for analysis of nondeterministic continuous and hybrid systems,” in Hybrid Systems: Computation and Control, 2005.
  19. M. Chen, S. Herbert, S. Bansal, and C. Tomlin, “Optimal control helper toolbox,” URL https://github. com/HJReachability/helperOC.

Summary

We haven't generated a summary for this paper yet.