Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Control Lyapunov-Value Functions for Nonlinear Disturbed Systems (2403.03455v1)

Published 6 Mar 2024 in math.OC, cs.SY, and eess.SY

Abstract: Control Lyapunov Functions (CLFs) have been extensively used in the control community. A well-known drawback is the absence of a systematic way to construct CLFs for general nonlinear systems, and the problem can become more complex with input or state constraints. Our preliminary work on constructing Control Lyapunov Value Functions (CLVFs) using Hamilton-Jacobi (HJ) reachability analysis provides a method for finding a non-smooth CLF. In this paper, we extend our work on CLVFs to systems with bounded disturbance and define the Robust CLVF (R-CLVF). The R-CLVF naturally inherits all properties of the CLVF; i.e., it first identifies the "smallest robust control invariant set (SRCIS)" and stabilizes the system to it with a user-specified exponential rate. The region from which the exponential rate can be met is called the "region of exponential stabilizability (ROES)." We provide clearer definitions of the SRCIS and more rigorous proofs of several important theorems. Since the computation of the R-CLVF suffers from the "curse of dimensionality," we also provide two techniques (warmstart and system decomposition) that solve it, along with necessary proofs. Three numerical examples are provided, validating our definition of SRCIS, illustrating the trade-off between a faster decay rate and a smaller ROES, and demonstrating the efficiency of computation using warmstart and decomposition.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. E. D. Sontag, “A ‘universal’ construction of Artstein’s theorem on nonlinear stabilization,” Systems & control letters, 1989.
  2. R. A. Freeman and J. A. Primbs, “Control lyapunov functions: New ideas from an old source,” in Conf. on Decision and Control, 1996.
  3. K. K. Hassan et al., “Nonlinear systems,” Departement of Electrical and Computer Engineering, Michigan State University, 2002.
  4. A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control barrier functions: Theory and applications,” in European Control Conf., 2019.
  5. A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly exponentially stabilizing control Lyapunov functions and hybrid zero dynamics,” Trans. on Automatic Control, 2014.
  6. A. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs for safety critical systems,” Trans. on Automatic Control, 2017.
  7. Z. Artstein, “Stabilization with relaxed controls,” Nonlinear Analysis: Theory, Methods & Applications, 1983.
  8. F. Camilli, L. Grüne, and F. Wirth, “Control Lyapunov functions and Zubov’s method,” SIAM Journal on Control and Optimization, 2008.
  9. P. Giesl and S. Hafstein, “Review on computational methods for lyapunov functions,” Discrete & Continuous Dynamical Systems, 2015.
  10. P. Giesl, “Construction of a local and global lyapunov function for discrete dynamical systems using radial basis functions,” Journal of Approximation Theory, 2008.
  11. X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of control barrier functions for safety critical control,” Int. Federation of Automatic Control, 2015.
  12. S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-Jacobi reachability: A brief overview and recent advances,” in Conf. on Decision and Control, 2017.
  13. L. C. Evans and P. E. Souganidis, “Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations,” Indiana University Mathematics Journal, 1984.
  14. M. G. Crandall and P.-L. Lions, “Viscosity solutions of hamilton-jacobi equations,” Trans. of the American mathematical society, 1983.
  15. M. G. Crandall, L. C. Evans, and P.-L. Lions, “Some properties of viscosity solutions of hamilton-jacobi equations,” Trans. of the American Mathematical Society, 1984.
  16. H. Frankowska, “Hamilton-jacobi equations: viscosity solutions and generalized gradients,” Journal of mathematical analysis and applications, 1989.
  17. M. Chen, S. L. Herbert, M. S. Vashishtha, S. Bansal, and C. J. Tomlin, “Decomposition of reachable sets and tubes for a class of nonlinear systems,” Trans. on Automatic Control, 2018.
  18. S. Bansal and C. J. Tomlin, “Deepreach: A deep learning approach to high-dimensional reachability,” in Int. Conf. on Robotics and Automation, 2021.
  19. S. Herbert, J. J. Choi, S. Sanjeev, M. Gibson, K. Sreenath, and C. J. Tomlin, “Scalable learning of safety guarantees for autonomous systems using Hamilton-Jacobi reachability,” in Int. Conf. on Robotics and Automation, 2021.
  20. C. He, Z. Gong, M. Chen, and S. Herbert, “Efficient and guaranteed hamilton–jacobi reachability via self-contained subsystem decomposition and admissible control sets,” IEEE Control Systems Letters, vol. 7, pp. 3824–3829, 2023.
  21. Z. Gong, M. Zhao, T. Bewley, and S. Herbert, “Constructing control lyapunov-value functions using hamilton-jacobi reachability analysis,” IEEE Control Systems Letters, vol. 7, pp. 925–930, 2022.
  22. S. Rakovic, E. Kerrigan, K. Kouramas, and D. Mayne, “Invariant approximations of the minimal robust positively invariant set,” IEEE Transactions on Automatic Control, vol. 50, no. 3, pp. 406–410, 2005.
  23. Y. Chen, H. Peng, J. Grizzle, and N. Ozay, “Data-driven computation of minimal robust control invariant set,” in 2018 IEEE Conference on Decision and Control (CDC).   IEEE, 2018, pp. 4052–4058.
  24. P. P. Varaiya, “On the existence of solutions to a differential game,” SIAM Journal on Control, vol. 5, no. 1, pp. 153–162, 1967.
  25. J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry, “Reach-avoid problems with time-varying dynamics, targets and constraints,” in Hybrid Systems: Computation and Control.   ACM, 2015.
  26. I. J. Fialho and T. T. Georgiou, “Worst case analysis of nonlinear systems,” Trans. on Automatic Control, 1999.
  27. J. J. Choi, D. Lee, K. Sreenath, C. J. Tomlin, and S. L. Herbert, “Robust control barrier-value functions for safety-critical control,” Conf. on Decision and Control, 2021.
Citations (3)

Summary

We haven't generated a summary for this paper yet.