Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mathematical modeling and numerical multigoal-oriented a posteriori error control and adaptivity for a stationary, nonlinear, coupled flow temperature model with temperature dependent density (2404.01823v1)

Published 2 Apr 2024 in math.NA and cs.NA

Abstract: In this work, we develop adaptive schemes using goal-oriented error control for a highly nonlinear flow temperature model with temperature dependent density. The dual-weighted residual method for computing error indicators to steer mesh refinement and solver control is employed. The error indicators are used to employ adaptive algorithms, which are substantiated with several numerical tests. Therein, error reductions and effectivity indices are consulted to establish the robustness and efficiency of our framework.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. Multigoal-oriented error estimation and mesh adaptivity for fluid–structure interaction. Journal of Computational and Applied Mathematics, 412:114315, 2022.
  2. M. Ainsworth and J. T. Oden. A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2000.
  3. E. d. C. Andrade. LVIII. A theory of the viscosity of liquids.—Part II. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 17(113):698–732, 1934.
  4. The deal.II library, version 9.1. Journal of Numerical Mathematics, 27:203–213, 2019.
  5. The deal.ii finite element library: Design, features, and insights. Computers & Mathematics with Applications, 2020.
  6. S. Arrhenius. Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Zeitschrift für Physikalische Chemie, 4U(1):96–116, 1889.
  7. S. Arrhenius. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschrift für Physikalische Chemie, 4U(1):226–248, 1889.
  8. W. Bangerth and R. Rannacher. Adaptive Finite Element Methods for Differential Equations. Birkhäuser, Lectures in Mathematics, ETH Zürich, 2003.
  9. Flexible goal-oriented adaptivity for higher-order space–time discretizations of transport problems with coupled flow. Computers & Mathematics with Applications, 91:17–35, 2021.
  10. R. Becker and R. Rannacher. A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math., 4:237–264, 1996.
  11. R. Becker and R. Rannacher. An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica, Cambridge University Press, pages 1–102, 2001.
  12. Multigoal-oriented a posteriori error control for heated material processing using a generalized Boussinesq model. Comptes Rendus. Mécanique, 2023. Online first.
  13. A machine-learning minimal-residual (ml-mres) framework for goal-oriented finite element discretizations. Computers & Mathematics with Applications, 95:186–199, 2021. Recent Advances in Least-Squares and Discontinuous Petrov–Galerkin Finite Element Methods.
  14. Dual weighted residual based error control for nonstationary convection-dominated equations: potential or ballast? In Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2018, pages 1–17. Springer, 2020.
  15. Femtosecond-laser-written microstructured waveguides in bk7 glass. Scientific Reports, 8(1), 2018.
  16. T. A. Davis. Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw., 30(2):196–199, jun 2004.
  17. J. De Guzman. Relation between fluidity and heat of fusion. Anales Soc. Espan. Fis. Y. Quim, 11:353–362, 1913.
  18. L. Dubrovinsky. Thermal expansion and equation of state. In K. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and P. Veyssière, editors, Encyclopedia of Materials: Science and Technology, pages 1–4. Elsevier, Oxford, 2002.
  19. B. Endtmayer. Multi-goal oriented a posteriori error estimates for nonlinear partial differential equations. PhD thesis, Johannes Kepler University Linz, 2021.
  20. Multigoal-oriented optimal control problems with nonlinear PDE constraints. Computers & Mathematics with Applications, 2020.
  21. A posteriori single- and multi-goal error control and adaptivity for partial differential equations. Elsevier, 2024.
  22. Hierarchical DWR Error Estimates for the Navier-Stokes Equations: h and p Enrichment. In Numerical Mathematics and Advanced Applications ENUMATH 2019, pages 363–372. Springer, 2021.
  23. Multigoal-oriented error estimates for non-linear problems. J. Numer. Math., 27(4):215–236, 2019.
  24. Two-Side a Posteriori Error Estimates for the Dual-Weighted Residual Method. SIAM J. Sci. Comput., 42(1):A371–A394, 2020.
  25. Reliability and efficiency of dwr-type a posteriori error estimates with smart sensitivity weight recovering. Computational Methods in Applied Mathematics, 21(2), 2021.
  26. Goal-Oriented Adaptive Space-Time Finite Element Methods for Regularized Parabolic p-Laplace Problems. arXiv preprint arXiv:2306.07167, 2023.
  27. B. Endtmayer and T. Wick. A partition-of-unity dual-weighted residual approach for multi-objective goal functional error estimation applied to elliptic problems. Computational Methods in Applied Mathematics, 17(2):575–599, 2017.
  28. E. Feireisl and J. Malek. On the navier-stokes equations with temperature-dependent transport coefficients. International Journal of Differential Equations, 2006, 2006.
  29. E. Fernández Cara. Motivation, analysis and control of the variable density navier-stokes equations. Discrete and continuous dynamical systems. Series S, 5 (6), 1021-1090., 2012.
  30. Contribution to modeling the viscosity arrhenius-type equation for some solvents by statistical correlations analysis. Fluid Phase Equilibria, 383:11–20, 2014.
  31. R. Hartmann. Multitarget error estimation and adaptivity in aerodynamic flow simulations. SIAM J. Sci. Comput., 31(1):708–731, 2008.
  32. R. Hartmann and P. Houston. Goal-oriented a posteriori error estimation for multiple target functionals. In Hyperbolic problems: theory, numerics, applications, pages 579–588. Springer, Berlin, 2003.
  33. Density and viscosity of several pure and water-saturated ionic liquids. Green Chem., 8:172–180, 2006.
  34. Stationary Solutions for Generalized Boussinesq Models. Journal of Differential Equations, 124(2):389–406, 1996.
  35. Bilinear optimal control problem for the stationary navier–stokes equations with variable density and slip boundary condition. Bulletin of the Brazilian Mathematical Society, New Series, 50:871–887, 2019.
  36. J. T. Oden. Adaptive multiscale predictive modelling. Acta Numerica, 27:353–450, 2018.
  37. A. Otto and M. Schmidt. Towards a universal numerical simulation model for laser material processing. Physics Procedia, 5:35–46, 2010. Laser Assisted Net Shape Engineering 6, Proceedings of the LANE 2010, Part 1.
  38. X. H. Owe Axelsson and M. Neytcheva. Numerical solution of the time-dependent navier–stokes equation for variable density–variable viscosity. part i. Mathematical Modelling and Analysis, 20(2):232–260, 2015.
  39. D. Pardo. Multigoal-oriented adaptivity for hp-finite element methods. Procedia Computer Science, 1(1):1953–1961, 2010.
  40. Low-loss curved waveguides in polymers written with a femtosecond laser. Opt. Express, 25(1):263–270, Jan 2017.
  41. J. Pech. Scheme for evolutionary navier-stokes-fourier system with temperature dependent material properties based on spectral/hp elements. In S. J. Sherwin, D. Moxey, J. Peiró, P. E. Vincent, and C. Schwab, editors, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018, pages 465–475, Cham, 2020. Springer International Publishing.
  42. C. Raman. A theory of the viscosity of liquids. Nature, 111(2790):532–533, 1923.
  43. R. Rannacher and J. Vihharev. Adaptive finite element analysis of nonlinear problems: balancing of discretization and iteration errors. Journal of Numerical Mathematics, 21(1):23–61, 2013.
  44. T. Richter and T. Wick. Variational localizations of the dual weighted residual estimator. Journal of Computational and Applied Mathematics, 279(0):192 – 208, 2015.
  45. Worst-case multi-objective error estimation and adaptivity. Comput. Methods Appl. Mech. Engrg., 313:723–743, 2017.
  46. Goal-oriented error estimation and adaptivity for fluid–structure interaction using exact linearized adjoints. Computer Methods in Applied Mechanics and Engineering, 200(37):2738–2757, 2011. Special Issue on Modeling Error Estimation and Adaptive Modeling.
  47. A. Ward. The viscosity of pure liquids. Transactions of the Faraday Society, 33:88–97, 1937.
  48. R. K. Zeytounian. Joseph Boussinesq and his approximation: a contemporary view. Comptes Rendus Mecanique, 331(8):575–586, 2003.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com