Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Locally different models in a checkerboard pattern with mesh adaptation and error control for multiple quantities of interest (2405.18567v1)

Published 28 May 2024 in math.NA and cs.NA

Abstract: In this work, we apply multi-goal oriented error estimation to the finite element method. In particular, we use the dual weighted residual method and apply it to a model problem. This model problem consist of locally different coercive partial differential equations in a checkerboard pattern, where the solution is continuous across the interface. In addition to the error estimation, the error can be localized using a partition of unity technique. The resulting adaptive algorithm is substantiated with a numerical example.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. Multigoal-oriented error estimation and mesh adaptivity for fluid–structure interaction. Journal of Computational and Applied Mathematics, 412:114315, 2022.
  2. M. Ainsworth and J. T. Oden. A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2000.
  3. I. Babuška and W. C. Rheinboldt. A-posteriori error estimates for the finite element method. International journal for numerical methods in engineering, 12(10):1597–1615, 1978.
  4. W. Bangerth and R. Rannacher. Adaptive Finite Element Methods for Differential Equations. Birkhäuser, Lectures in Mathematics, ETH Zürich, 2003.
  5. Flexible goal-oriented adaptivity for higher-order space–time discretizations of transport problems with coupled flow. Computers & Mathematics with Applications, 91:17–35, 2021.
  6. R. Becker and R. Rannacher. A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math., 4:237–264, 1996.
  7. R. Becker and R. Rannacher. An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica, Cambridge University Press, pages 1–102, 2001.
  8. Mathematical modeling and numerical multigoal-oriented a posteriori error control and adaptivity for a stationary, nonlinear, coupled flow temperature model with temperature dependent density. arXiv preprint arXiv:2404.01823, 2024.
  9. Multigoal-oriented a posteriori error control for heated material processing using a generalized Boussinesq model. Comptes Rendus. Mécanique, 2023. Online first.
  10. D. Braess. Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. Springer-Verlag, 2013.
  11. A machine-learning minimal-residual (ml-mres) framework for goal-oriented finite element discretizations. Computers & Mathematics with Applications, 95:186–199, 2021. Recent Advances in Least-Squares and Discontinuous Petrov–Galerkin Finite Element Methods.
  12. Dual weighted residual based error control for nonstationary convection-dominated equations: potential or ballast? In Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2018, pages 1–17. Springer, 2020.
  13. Finite elements. 3. Computational aspects. Prentice-Hall, 1984.
  14. P. G. Ciarlet. The finite element method for elliptic problems. North-Holland, Amsterdam [u.a.], 2. pr. edition, 1987.
  15. R. Courant. Variational methods for the solution of problems of equilibrium and vibrations. 1943.
  16. L. Diening. Riesz potential and sobolev embeddings on generalized lebesgue and sobolev spaces lp (·) and wk, p (·). Mathematische Nachrichten, 268(1):31–43, 2004.
  17. Goal-oriented mesh adaptation method for nonlinear problems including algebraic errors. Computers & Mathematics with Applications, 93:178–198, 2021.
  18. W. Dörfler. A convergent adaptive algorithm for poisson’s equation. SIAM Journal on Numerical Analysis, 33(3):1106–1124, 1996.
  19. B. Endtmayer. Multi-goal oriented a posteriori error estimates for nonlinear partial differential equations. PhD thesis, Johannes Kepler University Linz, 2021.
  20. Multigoal-oriented optimal control problems with nonlinear PDE constraints. Computers & Mathematics with Applications, 2020.
  21. Mesh adaptivity and error estimates applied to a regularized p-Laplacian constrained optimal control problem for multiple quantities of interest. PAMM, 19(1):e201900231, 2019.
  22. A posteriori single- and multi-goal error control and adaptivity for partial differential equations. Elsevier, 2024.
  23. Multiple goal-oriented error estimates applied to 3d non-linear problems. PAMM, 18(1):e201800048, 2018.
  24. Multigoal-oriented error estimates for non-linear problems. J. Numer. Math., 27(4):215–236, 2019.
  25. Two-Side a Posteriori Error Estimates for the Dual-Weighted Residual Method. SIAM J. Sci. Comput., 42(1):A371–A394, 2020.
  26. Reliability and efficiency of dwr-type a posteriori error estimates with smart sensitivity weight recovering. Computational Methods in Applied Mathematics, 21(2), 2021.
  27. B. Endtmayer and A. Schafelner. Goal oriented adaptive space time finite element methods applied to touching domains. arXiv preprint arXiv:2401.17237, 2024.
  28. Goal-Oriented Adaptive Space-Time Finite Element Methods for Regularized Parabolic p-Laplace Problems. arXiv preprint arXiv:2306.07167, 2023.
  29. B. Endtmayer and T. Wick. A partition-of-unity dual-weighted residual approach for multi-objective goal functional error estimation applied to elliptic problems. Computational Methods in Applied Mathematics, 17(2):575–599, 2017.
  30. R. Hartmann. Multitarget error estimation and adaptivity in aerodynamic flow simulations. SIAM J. Sci. Comput., 31(1):708–731, 2008.
  31. R. Hartmann and P. Houston. Goal-oriented a posteriori error estimation for multiple target functionals. In Hyperbolic problems: theory, numerics, applications, pages 579–588. Springer, Berlin, 2003.
  32. K. Kergrene. A Goal-Oriented Finite Element Method and Its Extension to PGD Reduced-Order Modeling. PhD thesis, Ecole Polytechnique, Montreal (Canada), 2018.
  33. A new goal-oriented formulation of the finite element method. Comput. Methods Appl. Mech. Engrg., 327:256–276, 2017.
  34. O. Kováčik and J. Rákosník. On spaces lp⁢(x)superscript𝑙𝑝𝑥l^{p(x)}italic_l start_POSTSUPERSCRIPT italic_p ( italic_x ) end_POSTSUPERSCRIPT and wk,p⁢(x)superscript𝑤𝑘𝑝𝑥w^{k,p(x)}italic_w start_POSTSUPERSCRIPT italic_k , italic_p ( italic_x ) end_POSTSUPERSCRIPT. Czechoslovak mathematical journal, 41(4):592–618, 1991.
  35. Existence of solutions for p⁢(x)𝑝𝑥p(x)italic_p ( italic_x )-laplacian equations. Electronic Journal of Qualitative Theory of Differential Equations, 2010(65):1–13, 2010.
  36. Goal-oriented error control of the iterative solution of finite element equations. Journal of Numerical Mathematics, 17:143–172, 2009.
  37. D. Pardo. Multigoal-oriented adaptivity for hp-finite element methods. Procedia Computer Science, 1(1):1953–1961, 2010.
  38. R. Rannacher and J. Vihharev. Adaptive finite element analysis of nonlinear problems: balancing of discretization and iteration errors. Journal of Numerical Mathematics, 21(1):23–61, 2013.
  39. S. Repin. A posteriori estimates for partial differential equations. Walter de Gruyter, 2008.
  40. T. Richter and T. Wick. Variational localizations of the dual weighted residual estimator. Journal of Computational and Applied Mathematics, 279(0):192 – 208, 2015.
  41. Worst-case multi-objective error estimation and adaptivity. Comput. Methods Appl. Mech. Engrg., 313:723–743, 2017.
  42. R. Verfürth. A posteriori error estimation techniques for finite element methods. OUP Oxford, 2013.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com