Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probing Stochastic Ultralight Dark Matter with Space-based Gravitational-Wave Interferometers (2404.01494v2)

Published 1 Apr 2024 in hep-ph, astro-ph.CO, and gr-qc

Abstract: Ultralight particles are theoretically well-motivated dark matter candidates. In the vicinity of the solar system, these ultralight particles can be described as a superposition of plane waves, resulting in a stochastic field with sizable amplitude fluctuations on scales determined by the velocity dispersion of dark matter. In this work, we systematically investigate the sensitivity of space-based gravitational-wave interferometers to the stochastic ultralight dark matter (ULDM) field within the frequentist framework. We derive the projected sensitivity of a single detector using the time-delay interferometry. Our results show that space-based gravitational-wave interferometers have the potential to probe unconstrained regions in parameter space and improve the current limit on coupling strengths. Furthermore, we explore the sensitivity of a detector network and investigate the optimal configuration for ULDM detection. We introduce the overlap reduction function for ULDM, which quantifies the degree of correlation between the signals observed by different detectors. We find that the configuration, where the signals observed by two detectors are uncorrelated, is the optimal choice for ULDM detection due to a smaller chance of missing signal. This contrasts with the detection of stochastic gravitational-wave background, where the correlated configuration is preferred. Our results may provide useful insights for potential joint observations involving space-based gravitational-wave detectors like LISA and Taiji, as well as other ULDM detection networks operating in the coherence limit.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977).
  2. S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
  3. F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
  4. L. F. Abbott and P. Sikivie, Phys. Lett. B 120, 133 (1983).
  5. M. Dine and W. Fischler, Phys. Lett. B 120, 137 (1983).
  6. T. Damour and A. M. Polyakov, Gen. Rel. Grav. 26, 1171 (1994a), arXiv:gr-qc/9411069 .
  7. T. Damour and A. M. Polyakov, Nucl. Phys. B 423, 532 (1994b), arXiv:hep-th/9401069 .
  8. S. Capozziello and M. De Laurentis, Phys. Rept. 509, 167 (2011), arXiv:1108.6266 [gr-qc] .
  9. A. E. Nelson and J. Scholtz, Phys. Rev. D 84, 103501 (2011).
  10. E. W. Kolb and A. J. Long, JHEP 03, 283 (2021), arXiv:2009.03828 [astro-ph.CO] .
  11. W. J. G. de Blok, Adv. Astron. 2010, 789293 (2010), arXiv:0910.3538 [astro-ph.CO] .
  12. J. S. Bullock and M. Boylan-Kolchin, Ann. Rev. Astron. Astrophys. 55, 343 (2017), arXiv:1707.04256 [astro-ph.CO] .
  13. S. Tulin and H.-B. Yu, Phys. Rept. 730, 1 (2018), arXiv:1705.02358 [hep-ph] .
  14. L. Hui, Ann. Rev. Astron. Astrophys. 59, 247 (2021), arXiv:2101.11735 [astro-ph.CO] .
  15. A. Derevianko, Phys. Rev. A 97, 042506 (2018).
  16. P. Fayet, Phys. Rev. D 97, 055039 (2018).
  17. K. K. Rogers and H. V. Peiris, Phys. Rev. Lett. 126, 071302 (2021).
  18. M. A. Fedderke and A. Mathur, Phys. Rev. D 107, 043004 (2023).
  19. A. Arvanitaki and S. Dubovsky, Phys. Rev. D 83, 044026 (2011).
  20. H. Davoudiasl and P. B. Denton, Phys. Rev. Lett. 123, 021102 (2019).
  21. H. Kim, JCAP 12, 018 (2023), arXiv:2306.13348 [hep-ph] .
  22. A. Khmelnitsky and V. Rubakov, Journal of Cosmology and Astroparticle Physics 2014, 019 (2014).
  23. Y. Cao and Y. Tang, Phys. Rev. D 108, 123017 (2023).
  24. H. Kim and A. Mitridate, Phys. Rev. D 109, 055017 (2024).
  25. T. Damour and J. F. Donoghue, Phys. Rev. D 82, 084033 (2010).
  26. P. T. et al. (MICROSCOPE Collaboration), Phys. Rev. Lett. 119, 231101 (2017).
  27. P. T. et al (MICROSCOPE Collaboration), Phys. Rev. Lett. 129, 121102 (2022).
  28. H. Grote and Y. V. Stadnik, Phys. Rev. Res. 1, 033187 (2019), arXiv:1906.06193 [astro-ph.IM] .
  29. S. M. Vermeulen et al., Nature 600, 424 (2021), arXiv:2103.03783 [gr-qc] .
  30. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
  31. M. A. et al, Phys. Rev. Lett. 120, 061101 (2018).
  32. A. L. Miller and L. Mendes, Phys. Rev. D 107, 063015 (2023).
  33. P. A.-S. et al, “Laser interferometer space antenna,”  (2017), arXiv:1702.00786 [astro-ph.IM] .
  34. W.-R. Hu and Y.-L. Wu, Natl. Sci. Rev. 4, 685 (2017).
  35. S. Morisaki and T. Suyama, Phys. Rev. D 100, 123512 (2019).
  36. G. P. Centers et al., Nature Commun. 12, 7321 (2021), arXiv:1905.13650 [astro-ph.CO] .
  37. M. Tinto and S. V. Dhurandhar, Living Rev. Rel. 24, 1 (2021).
  38. B. Allen and J. D. Romano, Phys. Rev. D 59, 102001 (1999).
  39. J. D. Romano and N. J. Cornish, Living Rev. Rel. 20, 2 (2017), arXiv:1608.06889 [gr-qc] .
  40. S. M. Kay (Fundamentals Of Statistical Signal Processing, 2001).
  41. P. Jaranowski and A. Krolak, Living Rev. Rel. 8, 3 (2005), arXiv:0711.1115 [gr-qc] .
  42. N. J. Cornish and J. D. Romano, Phys. Rev. D 87, 122003 (2013).
  43. B. S. Sathyaprakash and B. F. Schutz, Living Rev. Rel. 12, 2 (2009), arXiv:0903.0338 [gr-qc] .
Citations (1)

Summary

We haven't generated a summary for this paper yet.