Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Ultralight Dark Matter Gravitationally with Laser Interferometers in Space (2404.04333v1)

Published 5 Apr 2024 in hep-ph, astro-ph.CO, and gr-qc

Abstract: Ultralight dark matter (ULDM) is one of the leading well-motivated dark matter candidates, predicted in many theories beyond the standard model of particle physics and cosmology. There have been increasing interests in searching for ULDM in physical and astronomical experiments, mostly assuming there are additional interactions other than gravity between ULDM and normal matter. Here we demonstrate that even if ULDM has only gravitational interaction, it shall induce gravitational perturbations in solar system that may be large enough to cause detectable signals in future gravitational-wave (GW) laser interferometers in space. We investigate the sensitivities of Michelson time-delay interferometer to ULDM of various spins, and show vector ULDM with mass $m\lesssim 10{-18}~$eV can be probed by space-based GW detectors aiming at $\mu$Hz frequencies. Our findings exhibit that GW detectors may directly probe ULDM in some mass ranges that otherwise are challenging to examine.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. R. D. Peccei and H. R. Quinn, CPCP\mathrm{CP}roman_CP conservation in the presence of pseudoparticles, Phys. Rev. Lett. 38, 1440 (1977).
  2. S. Weinberg, A new light boson?, Phys. Rev. Lett. 40, 223 (1978).
  3. F. Wilczek, Problem of strong p𝑝pitalic_p and t𝑡titalic_t invariance in the presence of instantons, Phys. Rev. Lett. 40, 279 (1978).
  4. D. J. E. Marsh, Axion Cosmology, Phys. Rept. 643, 1 (2016), arXiv:1510.07633 [astro-ph.CO] .
  5. P. Agrawal et al., Feebly-interacting particles: FIPs 2020 workshop report, Eur. Phys. J. C 81, 1015 (2021), arXiv:2102.12143 [hep-ph] .
  6. J. Polchinski, String theory, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2007).
  7. Y.-L. Wu, Foundations of the Hyperunified Field Theory (World Scientific, 2022).
  8. J. E. Kim, Light Pseudoscalars, Particle Physics and Cosmology, Phys. Rept. 150, 1 (1987).
  9. P. Fayet, Extra U(1)’s and New Forces, Nucl. Phys. B 347, 743 (1990).
  10. D. H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density perturbation, Phys. Rept. 314, 1 (1999), arXiv:hep-ph/9807278 .
  11. P. W. Graham, J. Mardon, and S. Rajendran, Vector Dark Matter from Inflationary Fluctuations, Phys. Rev. D 93, 103520 (2016), arXiv:1504.02102 [hep-ph] .
  12. Y. Ema, K. Nakayama, and Y. Tang, Production of purely gravitational dark matter: the case of fermion and vector boson, JHEP 07, 060, arXiv:1903.10973 [hep-ph] .
  13. A. Ahmed, B. Grzadkowski, and A. Socha, Gravitational production of vector dark matter, JHEP 08, 059, arXiv:2005.01766 [hep-ph] .
  14. E. W. Kolb and A. J. Long, Completely dark photons from gravitational particle production during the inflationary era, JHEP 03, 283, arXiv:2009.03828 [astro-ph.CO] .
  15. P. W. Graham and S. Rajendran, New Observables for Direct Detection of Axion Dark Matter, Phys. Rev. D 88, 035023 (2013), arXiv:1306.6088 [hep-ph] .
  16. J. Preskill, M. B. Wise, and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120, 127 (1983).
  17. L. F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120, 133 (1983).
  18. M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120, 137 (1983).
  19. H.-J. Li, W. Chao, and Y.-F. Zhou, Axion limits from the 10-year gamma-ray emission 1ES 1215+303, Phys. Lett. B 850, 138531 (2024), arXiv:2312.05555 [astro-ph.HE] .
  20. T. Liu, X. Lou, and J. Ren, Pulsar Polarization Arrays, Phys. Rev. Lett. 130, 121401 (2023), arXiv:2111.10615 [astro-ph.HE] .
  21. Y. V. Stadnik and V. V. Flambaum, Searching for dark matter and variation of fundamental constants with laser and maser interferometry, Phys. Rev. Lett. 114, 161301 (2015), arXiv:1412.7801 [hep-ph] .
  22. C. Fu et al. (PandaX), Limits on Axion Couplings from the First 80 Days of Data of the PandaX-II Experiment, Phys. Rev. Lett. 119, 181806 (2017), arXiv:1707.07921 [hep-ex] .
  23. E. Aprile et al. (XENON), Search for New Physics in Electronic Recoil Data from XENONnT, Phys. Rev. Lett. 129, 161805 (2022), arXiv:2207.11330 [hep-ex] .
  24. W. Chao, J.-J. Feng, and M.-J. Jin, Direct detections of the Axion-like particle Revisited,   (2023a), arXiv:2311.09547 [hep-ph] .
  25. A. Garcon et al., Constraints on bosonic dark matter from ultralow-field nuclear magnetic resonance, Sci. Adv. 5, eaax4539 (2019), arXiv:1902.04644 [hep-ex] .
  26. G. P. Centers et al., Stochastic fluctuations of bosonic dark matter, Nature Commun. 12, 7321 (2021), arXiv:1905.13650 [astro-ph.CO] .
  27. K. Wei et al., Dark matter search with a strongly-coupled hybrid spin system,  (2023), arXiv:2306.08039 [hep-ph] .
  28. S.-F. Ge and H. Murayama, Apparent CPT Violation in Neutrino Oscillation from Dark Non-Standard Interactions,  (2019), arXiv:1904.02518 [hep-ph] .
  29. K.-Y. Choi, E. J. Chun, and J. Kim, Neutrino Oscillations in Dark Matter, Phys. Dark Univ. 30, 100606 (2020), arXiv:1909.10478 [hep-ph] .
  30. Y. Chen, X. Xue, and V. Cardoso, Black Holes as Neutrino Factories,   (2023a), arXiv:2308.00741 [hep-ph] .
  31. Z. Tang et al., SRF Cavity Searches for Dark Photon Dark Matter: First Scan Results,   (2023), arXiv:2305.09711 [hep-ex] .
  32. A. Pierce, K. Riles, and Y. Zhao, Searching for dark photon dark matter with gravitational-wave detectors, Phys. Rev. Lett. 121, 061102 (2018).
  33. S. Morisaki and T. Suyama, Detectability of ultralight scalar field dark matter with gravitational-wave detectors, Phys. Rev. D 100, 123512 (2019).
  34. K. Fukusumi, S. Morisaki, and T. Suyama, Upper limit on scalar field dark matter from ligo-virgo third observation run (2023), arXiv:2303.13088 [hep-ph] .
  35. A. Khmelnitsky and V. Rubakov, Pulsar timing signal from ultralight scalar dark matter, JCAP 02, 019, arXiv:1309.5888 [astro-ph.CO] .
  36. N. K. Porayko and K. A. Postnov, Constraints on ultralight scalar dark matter from pulsar timing, Phys. Rev. D 90, 062008 (2014), arXiv:1408.4670 [astro-ph.CO] .
  37. A. Aoki and J. Soda, Detecting ultralight axion dark matter wind with laser interferometers, Int. J. Mod. Phys. D 26, 1750063 (2016), arXiv:1608.05933 [astro-ph.CO] .
  38. K. Nomura, A. Ito, and J. Soda, Pulsar timing residual induced by ultralight vector dark matter, Eur. Phys. J. C 80, 419 (2020), arXiv:1912.10210 [gr-qc] .
  39. S. Sun, X.-Y. Yang, and Y.-L. Zhang, Pulsar timing residual induced by wideband ultralight dark matter with spin 0,1,2, Phys. Rev. D 106, 066006 (2022), arXiv:2112.15593 [astro-ph.CO] .
  40. Y.-M. Wu, Z.-C. Chen, and Q.-G. Huang, Pulsar timing residual induced by ultralight tensor dark matter, JCAP 09, 021, arXiv:2305.08091 [hep-ph] .
  41. R.-Z. Guo, Y. Jiang, and Q.-G. Huang, Probing Ultralight Tensor Dark Matter with the Stochastic Gravitational-Wave Background from Advanced LIGO and Virgo’s First Three Observing Runs,   (2023), arXiv:2312.16435 [astro-ph.CO] .
  42. R.-G. Cai, J.-R. Zhang, and Y.-L. Zhang, Angular correlation and deformed Hellings-Downs curve by spin-2 ultralight dark matter,  (2024), arXiv:2402.03984 [gr-qc] .
  43. X. Xue et al. (PPTA), High-precision search for dark photon dark matter with the Parkes Pulsar Timing Array, Phys. Rev. Res. 4, L012022 (2022), arXiv:2112.07687 [hep-ph] .
  44. H. Kim, Gravitational interaction of ultralight dark matter with interferometers, JCAP 12, 018, arXiv:2306.13348 [hep-ph] .
  45. H. Kim and A. Mitridate, Stochastic ultralight dark matter fluctuations in pulsar timing arrays, Phys. Rev. D 109, 055017 (2024), arXiv:2312.12225 [hep-ph] .
  46. N. P. Pitjev and E. V. Pitjeva, Constraints on dark matter in the solar system, Astronomy Letters 39, 141–149 (2013).
  47. D. Blas, D. L. Nacir, and S. Sibiryakov, Ultralight Dark Matter Resonates with Binary Pulsars, Phys. Rev. Lett. 118, 261102 (2017), arXiv:1612.06789 [hep-ph] .
  48. D. Blas, D. López Nacir, and S. Sibiryakov, Secular effects of ultralight dark matter on binary pulsars, Phys. Rev. D 101, 063016 (2020), arXiv:1910.08544 [gr-qc] .
  49. A. Schneider, Constraining noncold dark matter models with the global 21-cm signal, Phys. Rev. D 98, 063021 (2018), arXiv:1805.00021 [astro-ph.CO] .
  50. A. Lidz and L. Hui, Implications of a prereionization 21-cm absorption signal for fuzzy dark matter, Phys. Rev. D 98, 023011 (2018), arXiv:1805.01253 [astro-ph.CO] .
  51. A. Arvanitaki and S. Dubovsky, Exploring the String Axiverse with Precision Black Hole Physics, Phys. Rev. D 83, 044026 (2011), arXiv:1004.3558 [hep-th] .
  52. R. Brito, V. Cardoso, and P. Pani, Superradiance: New Frontiers in Black Hole Physics, Lect. Notes Phys. 906, pp.1 (2015), arXiv:1501.06570 [gr-qc] .
  53. H. Davoudiasl and P. B. Denton, Ultralight Boson Dark Matter and Event Horizon Telescope Observations of M87*, Phys. Rev. Lett. 123, 021102 (2019), arXiv:1904.09242 [astro-ph.CO] .
  54. Y. Cao and Y. Tang, Signatures of ultralight bosons in compact binary inspiral and outspiral, Phys. Rev. D 108, 123017 (2023), arXiv:2307.05181 [gr-qc] .
  55. D. J. E. Marsh and J. C. Niemeyer, Strong Constraints on Fuzzy Dark Matter from Ultrafaint Dwarf Galaxy Eridanus II, Phys. Rev. Lett. 123, 051103 (2019), arXiv:1810.08543 [astro-ph.CO] .
  56. M. Safarzadeh and D. N. Spergel, Ultra-light Dark Matter is Incompatible with the Milky Way’s Dwarf Satellites 10.3847/1538-4357/ab7db2 (2019), arXiv:1906.11848 [astro-ph.CO] .
  57. We find tensor ULDM has similar behaviors as scalar ULDM.
  58. P. Amaro-Seoane et al., Laser interferometer space antenna (2017), arXiv:1702.00786 [astro-ph.IM] .
  59. W.-R. Hu and Y.-L. Wu, The Taiji Program in Space for gravitational wave physics and the nature of gravity, National Science Review 4, 685 (2017), https://academic.oup.com/nsr/article-pdf/4/5/685/31566708/nwx116.pdf .
  60. J. Luo et al., Tianqin: a space-borne gravitational wave detector, Classical and Quantum Gravity 33, 035010 (2016).
  61. J. Crowder and N. J. Cornish, Beyond lisa: Exploring future gravitational wave missions, Phys. Rev. D 72, 083005 (2005).
  62. S. Kawamura et al., The japanese space gravitational wave antenna—decigo, Classical and Quantum Gravity 23, S125 (2006).
  63. A. Sesana et al., Unveiling the gravitational universe at μ𝜇\muitalic_μ-hz frequencies, Experimental Astronomy 51, 1333–1383 (2021).
  64. W. Martens, M. Khan, and J.-B. Bayle, Lisamax: Improving the low-frequency gravitational-wave sensitivity by two orders of magnitude (2023), arXiv:2304.08287 [gr-qc] .
  65. W.-T. NI, Astrod-gw: Overview and progress, International Journal of Modern Physics D 22, 1341004 (2013).
  66. M. Tinto and S. V. Dhurandhar, Time-delay interferometry, Living Rev. Rel. 24, 1 (2021).
  67. S. Babak, A. Petiteau, and M. Hewitson, LISA Sensitivity and SNR Calculations,   (2021), arXiv:2108.01167 [astro-ph.IM] .
  68. L. F. O. Costa and J. Natario, Gravito-electromagnetic analogies, Gen. Rel. Grav. 46, 1792 (2014), arXiv:1207.0465 [gr-qc] .
  69. L. G. Book and E. E. Flanagan, Astrometric Effects of a Stochastic Gravitational Wave Background, Phys. Rev. D 83, 024024 (2011), arXiv:1009.4192 [astro-ph.CO] .
  70. G. Collaboration, Gaia data release 3: Summary of the content and survey properties,  (2022), arXiv:2208.00211 [astro-ph.GA] .
  71. G. Mentasti and C. R. Contaldi, Observing gravitational waves with solar system astrometry,   (2023), arXiv:2311.03474 [gr-qc] .
Citations (1)

Summary

We haven't generated a summary for this paper yet.