Cluster state as a non-invertible symmetry protected topological phase (2404.01369v3)
Abstract: We show that the standard 1+1d $\mathbb{Z}_2\times \mathbb{Z}_2$ cluster model has a non-invertible global symmetry, described by the fusion category Rep(D$_8$). Therefore, the cluster state is not only a $\mathbb{Z}_2\times \mathbb{Z}_2$ symmetry protected topological (SPT) phase, but also a non-invertible SPT phase. We further find two new commuting Pauli Hamiltonians for the other two Rep(D$_8$) SPT phases on a tensor product Hilbert space of qubits, matching the classification in field theory and mathematics. We identify the edge modes and the local projective algebras at the interfaces between these non-invertible SPT phases. Finally, we show that there does not exist a symmetric entangler that maps between these distinct SPT states.
- X. Chen, Z.-C. Gu, and X.-G. Wen, Classification of gapped symmetric phases in one-dimensional spin systems, Phys. Rev. B 83, 035107 (2011a), arXiv:1008.3745 [cond-mat.str-el] .
- L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev. B 83, 075103 (2011), arXiv:1008.4138 [cond-mat.str-el] .
- N. Schuch, D. Pérez-García, and I. Cirac, Classifying quantum phases using matrix product states and projected entangled pair states, Phys. Rev. B 84, 165139 (2011).
- T. Senthil, Symmetry Protected Topological phases of Quantum Matter, Ann. Rev. Condensed Matter Phys. 6, 299 (2015), arXiv:1405.4015 [cond-mat.str-el] .
- W. Son, L. Amico, and V. Vedral, Topological order in 1d cluster state protected by symmetry, Quantum Information Processing 11, 1961 (2012).
- M. A. Nielsen, Cluster-state quantum computation, Reports on Mathematical Physics 57, 147 (2006), arXiv:quant-ph/0504097 [quant-ph] .
- J. McGreevy, Generalized Symmetries in Condensed Matter 10.1146/annurev-conmatphys-040721-021029 (2022), arXiv:2204.03045 [cond-mat.str-el] .
- T. D. Brennan and S. Hong, Introduction to Generalized Global Symmetries in QFT and Particle Physics, (2023), arXiv:2306.00912 [hep-ph] .
- S. Schafer-Nameki, ICTP Lectures on (Non-)Invertible Generalized Symmetries, (2023), arXiv:2305.18296 [hep-th] .
- S.-H. Shao, What’s Done Cannot Be Undone: TASI Lectures on Non-Invertible Symmetry, (2023), arXiv:2308.00747 [hep-th] .
- M. Oshikawa and I. Affleck, Boundary conformal field theory approach to the critical two-dimensional Ising model with a defect line, Nucl. Phys. B 495, 533 (1997), arXiv:cond-mat/9612187 .
- D. Aasen, R. S. K. Mong, and P. Fendley, Topological Defects on the Lattice I: The Ising model, J. Phys. A 49, 354001 (2016), arXiv:1601.07185 [cond-mat.stat-mech] .
- D. Aasen, P. Fendley, and R. S. K. Mong, Topological Defects on the Lattice: Dualities and Degeneracies, (2020), arXiv:2008.08598 [cond-mat.stat-mech] .
- L. Li, M. Oshikawa, and Y. Zheng, Noninvertible duality transformation between symmetry-protected topological and spontaneous symmetry breaking phases, Phys. Rev. B 108, 214429 (2023), arXiv:2301.07899 [cond-mat.str-el] .
- N. Seiberg, S. Seifnashri, and S.-H. Shao, Non-invertible symmetries and LSM-type constraints on a tensor product Hilbert space, (2024), arXiv:2401.12281 [cond-mat.str-el] .
- R. Thorngren and Y. Wang, Fusion Category Symmetry I: Anomaly In-Flow and Gapped Phases, (2019), arXiv:1912.02817 [hep-th] .
- C. Zhang and C. Córdova, Anomalies of (1+1)D11𝐷(1+1)D( 1 + 1 ) italic_D categorical symmetries, (2023), arXiv:2304.01262 [cond-mat.str-el] .
- C. Cordova, P.-S. Hsin, and C. Zhang, Anomalies of Non-Invertible Symmetries in (3+1)d, (2023), arXiv:2308.11706 [hep-th] .
- Y. Choi, D.-C. Lu, and Z. Sun, Self-duality under gauging a non-invertible symmetry, (2023b), arXiv:2310.19867 [hep-th] .
- D. Tambara, Representations of tensor categories with fusion rules of self-duality for abelian groups, Israel Journal of Mathematics 118, 29 (2000).
- G. W. Moore and N. Seiberg, Classical and Quantum Conformal Field Theory, Commun. Math. Phys. 123, 177 (1989a).
- G. W. Moore and N. Seiberg, Naturality in Conformal Field Theory, Nucl. Phys. B 313, 16 (1989b).
- C. Fechisin, N. Tantivasadakarn, and V. V. Albert, Non-invertible symmetry-protected topological order in a group-based cluster state, (2023), arXiv:2312.09272 [cond-mat.str-el] .
- K. Inamura, Topological field theories and symmetry protected topological phases with fusion category symmetries, JHEP 05, 204, arXiv:2103.15588 [cond-mat.str-el] .
- S. Seifnashri and S.-H. Shao, to appear .
- T. Kennedy and H. Tasaki, Hidden symmetry breaking and the haldane phase in s= 1 quantum spin chains, Communications in mathematical physics 147, 431 (1992a).
- T. Kennedy and H. Tasaki, Hidden z2subscriptz2{\mathrm{z}}_{2}roman_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT×z2subscriptz2{\mathrm{z}}_{2}roman_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT symmetry breaking in haldane-gap antiferromagnets, Phys. Rev. B 45, 304 (1992b).
- M. D. F. de Wild Propitius, Topological interactions in broken gauge theories, Ph.D. thesis, Amsterdam U. (1995), arXiv:hep-th/9511195 .
- D. V. Else and C. Nayak, Classifying symmetry-protected topological phases through the anomalous action of the symmetry on the edge, Phys. Rev. B 90, 235137 (2014), arXiv:1409.5436 [cond-mat.str-el] .
- L. Bhardwaj and Y. Tachikawa, On finite symmetries and their gauging in two dimensions, JHEP 03, 189, arXiv:1704.02330 [hep-th] .
- K. Inamura, On lattice models of gapped phases with fusion category symmetries, JHEP 03, 036, arXiv:2110.12882 [cond-mat.str-el] .
- C. Vafa, Quantum Symmetries of String Vacua, Mod. Phys. Lett. A 4, 1615 (1989).
- M. Levin and Z.-C. Gu, Braiding statistics approach to symmetry-protected topological phases, Phys. Rev. B 86, 115109 (2012), arXiv:1202.3120 [cond-mat.str-el] .
- X. Chen, Z.-X. Liu, and X.-G. Wen, Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations, Phys. Rev. B 84, 235141 (2011b), arXiv:1106.4752 [cond-mat.str-el] .
- J. Wang, X.-G. Wen, and E. Witten, Symmetric Gapped Interfaces of SPT and SET States: Systematic Constructions, Phys. Rev. X 8, 031048 (2018), arXiv:1705.06728 [cond-mat.str-el] .
- S. Seifnashri, Lieb-Schultz-Mattis anomalies as obstructions to gauging (non-on-site) symmetries, (2023), arXiv:2308.05151 [cond-mat.str-el] .
- Y. Yao and M. Oshikawa, Twisted boundary condition and Lieb-Schultz-Mattis ingappability for discrete symmetries, Phys. Rev. Lett. 126, 217201 (2021), arXiv:2010.09244 [cond-mat.str-el] .
- Y. Tachikawa, On gauging finite subgroups, SciPost Phys. 8, 015 (2020), arXiv:1712.09542 [hep-th] .
- M. Iqbal et al., Non-Abelian topological order and anyons on a trapped-ion processor, Nature 626, 505 (2024), arXiv:2305.03766 [quant-ph] .
- J. Kaidi, K. Ohmori, and Y. Zheng, Kramers-Wannier-like Duality Defects in (3+1)D Gauge Theories, Phys. Rev. Lett. 128, 111601 (2022), arXiv:2111.01141 [hep-th] .
- W. Ji, S.-H. Shao, and X.-G. Wen, Topological Transition on the Conformal Manifold, Phys. Rev. Res. 2, 033317 (2020), arXiv:1909.01425 [cond-mat.str-el] .
- Y.-H. Lin and S.-H. Shao, Duality Defect of the Monster CFT, J. Phys. A 54, 065201 (2021), arXiv:1911.00042 [hep-th] .
- Y. Choi, H. T. Lam, and S.-H. Shao, Noninvertible Global Symmetries in the Standard Model, Phys. Rev. Lett. 129, 161601 (2022b), arXiv:2205.05086 [hep-th] .
- C. Cordova and K. Ohmori, Noninvertible Chiral Symmetry and Exponential Hierarchies, Phys. Rev. X 13, 011034 (2023), arXiv:2205.06243 [hep-th] .
- D. Tambara and S. Yamagami, Tensor categories with fusion rules of self-duality for finite abelian groups, Journal of Algebra 209, 692 (1998).
- W. Ji and X.-G. Wen, Categorical symmetry and noninvertible anomaly in symmetry-breaking and topological phase transitions, Phys. Rev. Res. 2, 033417 (2020), arXiv:1912.13492 [cond-mat.str-el] .
- D. S. Freed, Short-range entanglement and invertible field theories, (2014), arXiv:1406.7278 [cond-mat.str-el] .
- D. S. Freed and G. W. Moore, Setting the quantum integrand of M-theory, Commun. Math. Phys. 263, 89 (2006), arXiv:hep-th/0409135 .
- E. Witten, SL(2,Z) action on three-dimensional conformal field theories with Abelian symmetry, in From Fields to Strings: Circumnavigating Theoretical Physics: A Conference in Tribute to Ian Kogan (2003) pp. 1173–1200, arXiv:hep-th/0307041 .
- K. Jensen, E. Shaverin, and A. Yarom, ’t Hooft anomalies and boundaries, JHEP 01, 085, arXiv:1710.07299 [hep-th] .
- T. Numasawa and S. Yamaguchi, Mixed global anomalies and boundary conformal field theories, JHEP 11, 202, arXiv:1712.09361 [hep-th] .
- R. Thorngren and Y. Wang, Anomalous symmetries end at the boundary, JHEP 09, 017, arXiv:2012.15861 [hep-th] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.