Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Cluster state as a non-invertible symmetry protected topological phase (2404.01369v3)

Published 1 Apr 2024 in cond-mat.str-el, hep-th, and quant-ph

Abstract: We show that the standard 1+1d $\mathbb{Z}_2\times \mathbb{Z}_2$ cluster model has a non-invertible global symmetry, described by the fusion category Rep(D$_8$). Therefore, the cluster state is not only a $\mathbb{Z}_2\times \mathbb{Z}_2$ symmetry protected topological (SPT) phase, but also a non-invertible SPT phase. We further find two new commuting Pauli Hamiltonians for the other two Rep(D$_8$) SPT phases on a tensor product Hilbert space of qubits, matching the classification in field theory and mathematics. We identify the edge modes and the local projective algebras at the interfaces between these non-invertible SPT phases. Finally, we show that there does not exist a symmetric entangler that maps between these distinct SPT states.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. X. Chen, Z.-C. Gu, and X.-G. Wen, Classification of gapped symmetric phases in one-dimensional spin systems, Phys. Rev. B 83, 035107 (2011a), arXiv:1008.3745 [cond-mat.str-el] .
  2. L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev. B 83, 075103 (2011), arXiv:1008.4138 [cond-mat.str-el] .
  3. N. Schuch, D. Pérez-García, and I. Cirac, Classifying quantum phases using matrix product states and projected entangled pair states, Phys. Rev. B 84, 165139 (2011).
  4. T. Senthil, Symmetry Protected Topological phases of Quantum Matter, Ann. Rev. Condensed Matter Phys. 6, 299 (2015), arXiv:1405.4015 [cond-mat.str-el] .
  5. W. Son, L. Amico, and V. Vedral, Topological order in 1d cluster state protected by symmetry, Quantum Information Processing 11, 1961 (2012).
  6. M. A. Nielsen, Cluster-state quantum computation, Reports on Mathematical Physics 57, 147 (2006), arXiv:quant-ph/0504097 [quant-ph] .
  7. J. McGreevy, Generalized Symmetries in Condensed Matter 10.1146/annurev-conmatphys-040721-021029 (2022), arXiv:2204.03045 [cond-mat.str-el] .
  8. T. D. Brennan and S. Hong, Introduction to Generalized Global Symmetries in QFT and Particle Physics,   (2023), arXiv:2306.00912 [hep-ph] .
  9. S. Schafer-Nameki, ICTP Lectures on (Non-)Invertible Generalized Symmetries,   (2023), arXiv:2305.18296 [hep-th] .
  10. S.-H. Shao, What’s Done Cannot Be Undone: TASI Lectures on Non-Invertible Symmetry,  (2023), arXiv:2308.00747 [hep-th] .
  11. M. Oshikawa and I. Affleck, Boundary conformal field theory approach to the critical two-dimensional Ising model with a defect line, Nucl. Phys. B 495, 533 (1997), arXiv:cond-mat/9612187 .
  12. D. Aasen, R. S. K. Mong, and P. Fendley, Topological Defects on the Lattice I: The Ising model, J. Phys. A 49, 354001 (2016), arXiv:1601.07185 [cond-mat.stat-mech] .
  13. D. Aasen, P. Fendley, and R. S. K. Mong, Topological Defects on the Lattice: Dualities and Degeneracies,   (2020), arXiv:2008.08598 [cond-mat.stat-mech] .
  14. L. Li, M. Oshikawa, and Y. Zheng, Noninvertible duality transformation between symmetry-protected topological and spontaneous symmetry breaking phases, Phys. Rev. B 108, 214429 (2023), arXiv:2301.07899 [cond-mat.str-el] .
  15. N. Seiberg, S. Seifnashri, and S.-H. Shao, Non-invertible symmetries and LSM-type constraints on a tensor product Hilbert space,   (2024), arXiv:2401.12281 [cond-mat.str-el] .
  16. R. Thorngren and Y. Wang, Fusion Category Symmetry I: Anomaly In-Flow and Gapped Phases,   (2019), arXiv:1912.02817 [hep-th] .
  17. C. Zhang and C. Córdova, Anomalies of (1+1)⁢D11𝐷(1+1)D( 1 + 1 ) italic_D categorical symmetries,   (2023), arXiv:2304.01262 [cond-mat.str-el] .
  18. C. Cordova, P.-S. Hsin, and C. Zhang, Anomalies of Non-Invertible Symmetries in (3+1)d,   (2023), arXiv:2308.11706 [hep-th] .
  19. Y. Choi, D.-C. Lu, and Z. Sun, Self-duality under gauging a non-invertible symmetry,   (2023b), arXiv:2310.19867 [hep-th] .
  20. D. Tambara, Representations of tensor categories with fusion rules of self-duality for abelian groups, Israel Journal of Mathematics 118, 29 (2000).
  21. G. W. Moore and N. Seiberg, Classical and Quantum Conformal Field Theory, Commun. Math. Phys. 123, 177 (1989a).
  22. G. W. Moore and N. Seiberg, Naturality in Conformal Field Theory, Nucl. Phys. B 313, 16 (1989b).
  23. C. Fechisin, N. Tantivasadakarn, and V. V. Albert, Non-invertible symmetry-protected topological order in a group-based cluster state,   (2023), arXiv:2312.09272 [cond-mat.str-el] .
  24. K. Inamura, Topological field theories and symmetry protected topological phases with fusion category symmetries, JHEP 05, 204, arXiv:2103.15588 [cond-mat.str-el] .
  25. S. Seifnashri and S.-H. Shao, to appear .
  26. T. Kennedy and H. Tasaki, Hidden symmetry breaking and the haldane phase in s= 1 quantum spin chains, Communications in mathematical physics 147, 431 (1992a).
  27. T. Kennedy and H. Tasaki, Hidden z2subscriptz2{\mathrm{z}}_{2}roman_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT×z2subscriptz2{\mathrm{z}}_{2}roman_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT symmetry breaking in haldane-gap antiferromagnets, Phys. Rev. B 45, 304 (1992b).
  28. M. D. F. de Wild Propitius, Topological interactions in broken gauge theories, Ph.D. thesis, Amsterdam U. (1995), arXiv:hep-th/9511195 .
  29. D. V. Else and C. Nayak, Classifying symmetry-protected topological phases through the anomalous action of the symmetry on the edge, Phys. Rev. B 90, 235137 (2014), arXiv:1409.5436 [cond-mat.str-el] .
  30. L. Bhardwaj and Y. Tachikawa, On finite symmetries and their gauging in two dimensions, JHEP 03, 189, arXiv:1704.02330 [hep-th] .
  31. K. Inamura, On lattice models of gapped phases with fusion category symmetries, JHEP 03, 036, arXiv:2110.12882 [cond-mat.str-el] .
  32. C. Vafa, Quantum Symmetries of String Vacua, Mod. Phys. Lett. A 4, 1615 (1989).
  33. M. Levin and Z.-C. Gu, Braiding statistics approach to symmetry-protected topological phases, Phys. Rev. B 86, 115109 (2012), arXiv:1202.3120 [cond-mat.str-el] .
  34. X. Chen, Z.-X. Liu, and X.-G. Wen, Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations, Phys. Rev. B 84, 235141 (2011b), arXiv:1106.4752 [cond-mat.str-el] .
  35. J. Wang, X.-G. Wen, and E. Witten, Symmetric Gapped Interfaces of SPT and SET States: Systematic Constructions, Phys. Rev. X 8, 031048 (2018), arXiv:1705.06728 [cond-mat.str-el] .
  36. S. Seifnashri, Lieb-Schultz-Mattis anomalies as obstructions to gauging (non-on-site) symmetries,   (2023), arXiv:2308.05151 [cond-mat.str-el] .
  37. Y. Yao and M. Oshikawa, Twisted boundary condition and Lieb-Schultz-Mattis ingappability for discrete symmetries, Phys. Rev. Lett. 126, 217201 (2021), arXiv:2010.09244 [cond-mat.str-el] .
  38. Y. Tachikawa, On gauging finite subgroups, SciPost Phys. 8, 015 (2020), arXiv:1712.09542 [hep-th] .
  39. M. Iqbal et al., Non-Abelian topological order and anyons on a trapped-ion processor, Nature 626, 505 (2024), arXiv:2305.03766 [quant-ph] .
  40. J. Kaidi, K. Ohmori, and Y. Zheng, Kramers-Wannier-like Duality Defects in (3+1)D Gauge Theories, Phys. Rev. Lett. 128, 111601 (2022), arXiv:2111.01141 [hep-th] .
  41. W. Ji, S.-H. Shao, and X.-G. Wen, Topological Transition on the Conformal Manifold, Phys. Rev. Res. 2, 033317 (2020), arXiv:1909.01425 [cond-mat.str-el] .
  42. Y.-H. Lin and S.-H. Shao, Duality Defect of the Monster CFT, J. Phys. A 54, 065201 (2021), arXiv:1911.00042 [hep-th] .
  43. Y. Choi, H. T. Lam, and S.-H. Shao, Noninvertible Global Symmetries in the Standard Model, Phys. Rev. Lett. 129, 161601 (2022b), arXiv:2205.05086 [hep-th] .
  44. C. Cordova and K. Ohmori, Noninvertible Chiral Symmetry and Exponential Hierarchies, Phys. Rev. X 13, 011034 (2023), arXiv:2205.06243 [hep-th] .
  45. D. Tambara and S. Yamagami, Tensor categories with fusion rules of self-duality for finite abelian groups, Journal of Algebra 209, 692 (1998).
  46. W. Ji and X.-G. Wen, Categorical symmetry and noninvertible anomaly in symmetry-breaking and topological phase transitions, Phys. Rev. Res. 2, 033417 (2020), arXiv:1912.13492 [cond-mat.str-el] .
  47. D. S. Freed, Short-range entanglement and invertible field theories,   (2014), arXiv:1406.7278 [cond-mat.str-el] .
  48. D. S. Freed and G. W. Moore, Setting the quantum integrand of M-theory, Commun. Math. Phys. 263, 89 (2006), arXiv:hep-th/0409135 .
  49. E. Witten, SL(2,Z) action on three-dimensional conformal field theories with Abelian symmetry, in From Fields to Strings: Circumnavigating Theoretical Physics: A Conference in Tribute to Ian Kogan (2003) pp. 1173–1200, arXiv:hep-th/0307041 .
  50. K. Jensen, E. Shaverin, and A. Yarom, ’t Hooft anomalies and boundaries, JHEP 01, 085, arXiv:1710.07299 [hep-th] .
  51. T. Numasawa and S. Yamaguchi, Mixed global anomalies and boundary conformal field theories, JHEP 11, 202, arXiv:1712.09361 [hep-th] .
  52. R. Thorngren and Y. Wang, Anomalous symmetries end at the boundary, JHEP 09, 017, arXiv:2012.15861 [hep-th] .
Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com