Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improved Moving-Puncture Techniques for Compact Binary Simulations (2404.01137v3)

Published 1 Apr 2024 in gr-qc and astro-ph.HE

Abstract: To fully unlock the scientific potential of upcoming gravitational wave (GW) interferometers, numerical relativity (NR) simulation accuracy will need to be greatly enhanced. We present three infrastructure-agnostic improvements to the moving-puncture approach for binary black hole (BBH) simulations, aimed at greatly reducing constraint violation and improving GW predictions. Although these improvements were developed within the highly efficient NR code BlackHoles@Home, we demonstrate their effectiveness in the widely-adopted Einstein Toolkit/Carpet AMR framework. Our improvements include a modified Kreiss-Oliger dissipation prescription, a Hamiltonian-constraint-damping adjustment to the BSSN equations, and an extra term to the 1+log lapse evolution equation that slows the development of the sharp lapse feature, which dominates numerical errors in BBH simulations. With minimal increase in computational cost, these improvements greatly reduce GW noise, enabling the extraction of high-order GW modes previously obscured by numerical noise. They also improve convergence properties near and inside the convergent regime, reduce Hamiltonian (momentum) constraint violations in the strong-field region by roughly two (three) orders of magnitude, and in the GW-extraction zone by five (two) orders of magnitude. To promote community adoption, we have open-sourced the improved Einstein Toolkit thorn BaikalVacuum used in this work. Although our focus is on BBH evolutions and the BSSN formulation, these improvements may also benefit compact binary simulations involving matter and other formulations, a focus for future investigations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. M. Pürrer and C.-J. Haster, Phys. Rev. Res. 2, 023151 (2020), arXiv:1912.10055 [gr-qc] .
  2. T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59, 024007 (1998), arXiv:gr-qc/9810065 .
  3. M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995).
  4. S. Bernuzzi and D. Hilditch, Phys. Rev. D 81, 084003 (2010), arXiv:0912.2920 [gr-qc] .
  5. P. Amaro-Seoane et al. (LISA), arXiv preprints  (2017), 1702.00786 [astro-ph.IM] .
  6. J. D. Brown, Phys. Rev. D 79, 104029 (2009), arXiv:0902.3652 [gr-qc] .
  7. W. Tichy and P. Marronetti, Phys. Rev. D 76, 061502 (2007), arXiv:gr-qc/0703075 .
  8. “Einstein Toolkit Consortium Homepage,”  (2024), http://einsteintoolkit.org/.
  9. “Carpet: Adaptive mesh refinement for the Cactus Framework,”  (2024), http://www.carpetcode.org/.
  10. “NRPy webpage,”  (2024), https://github.com/nrpy/nrpy.
  11. H.-O. Kreiss and J. Oliger, Methods for the approximate solution of time dependent problems, GARP Publications Series No. 10 (World Meteorological Organization and International Council of Scientific Unions, Geneva, 1973).
  12. G. Bozzola and V. Paschalidis, Phys. Rev. D 104, 044004 (2021), arXiv:2104.06978 [gr-qc] .
  13. G. Yoneda and H.-a. Shinkai, Phys. Rev. D 66, 124003 (2002), arXiv:gr-qc/0204002 .
  14. C. A. Raithel and V. Paschalidis, Phys. Rev. D 106, 023015 (2022), arXiv:2204.00698 [gr-qc] .
  15. J. D. Brown, Phys. Rev. D 80, 084042 (2009), arXiv:0908.3814 [gr-qc] .
  16. B. Wardell, I. Hinder,  and E. Bentivegna, “Simulation of GW150914 binary black hole merger using the Einstein Toolkit,”  (2016).
  17. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 061102 (2016a), arXiv:1602.03837 [gr-qc] .
  18. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 241102 (2016b), arXiv:1602.03840 [gr-qc] .
  19. J. Thornburg, Classical and Quantum Gravity 21, 743 (2004), gr-qc/0306056 .
  20. McLachlan, “McLachlan, a public BSSN code,” .
  21. F. G. L. Armengol et al., Phys. Rev. D 106, 083015 (2022), arXiv:2112.09817 [astro-ph.HE] .
  22. L. R. Werneck et al., Phys. Rev. D 107, 044037 (2023), arXiv:2208.14487 [gr-qc] .
  23. AMR grid structures and resolutions were chosen such that each resolution maintains consistent physical boundaries for AMR grids in our moving-box AMR algorithm.
  24. Idaho C3+3 Collaboration, “Falcon: High performance supercomputer,”  (2022).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)