Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 96 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Kimi K2 189 tok/s Pro
2000 character limit reached

Entropy bounds for device-independent quantum key distribution with local Bell test (2404.00792v2)

Published 31 Mar 2024 in quant-ph

Abstract: One of the main challenges in device-independent quantum key distribution (DIQKD) is achieving the required Bell violation over long distances, as the channel losses result in low overall detection efficiencies. Recent works have explored the concept of certifying nonlocal correlations over extended distances through the use of a local Bell test. Here, an additional quantum device is placed in close proximity to one party, using short-distance correlations to verify nonlocal behavior at long distances. However, existing works have either not resolved the question of DIQKD security against active attackers in this setup, or used methods that do not yield tight bounds on the keyrates. In this work, we introduce a general formulation of the keyrate computation task in this setup that can be combined with recently developed methods for analyzing standard DIQKD. Using this method, we show that if the short-distance devices exhibit sufficiently high detection efficiencies, positive keyrates can be achieved in the long-distance branch with lower detection efficiencies as compared to standard DIQKD setups. This highlights the potential for improved performance of DIQKD over extended distances in scenarios where short-distance correlations are leveraged to validate quantum correlations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. A. K. Ekert, Quantum cryptography based on Bell’s theorem, Physical Review Letters 67, 661 (1991).
  2. H.-K. Lo, M. Curty, and K. Tamaki, Secure quantum key distribution, Nature Photonics 8, 595 (2014).
  3. V. Scarani and C. Kurtsiefer, The black paper of quantum cryptography: Real implementation problems, Theoretical Computer Science 560, 27 (2014).
  4. V. Zapatero, Álvaro Navarrete, and M. Curty, Implementation security in quantum key distribution, arXiv:2310.20377  (2023).
  5. J. Barrett, L. Hardy, and A. Kent, No Signaling and Quantum Key Distribution, Physical Review Letters 95, 010503 (2005).
  6. V. Scarani, The device-independent outlook on quantum physics (lecture notes on the power of Bell’s theorem), Acta Physica Slovaca 62, 347 (2012).
  7. A. Chaturvedi, G. Viola, and M. Pawłowski, Extending loophole-free nonlocal correlations to arbitrarily large distances, arXiv:2211.14231  (2022).
  8. E. P. Lobo, J. Pauwels, and S. Pironio, Certifying long-range quantum correlations through routed Bell tests, arXiv:2310.07484  (2023).
  9. P. Brown, H. Fawzi, and O. Fawzi, Device-independent lower bounds on the conditional von Neumann entropy, arXiv:2106.13692v2 [quant-ph]  (2021).
  10. R. Renner, Security of Quantum Key Distribution (2005).
  11. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, 2010).
  12. M. Navascués, S. Pironio, and A. Acín, A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations, New Journal of Physics 10, 073013 (2008).
  13. R. Renner, N. Gisin, and B. Kraus, Information-theoretic security proof for quantum-key-distribution protocols, Physical Review A 72, 012332 (2005).
  14. B. Kraus, N. Gisin, and R. Renner, Lower and Upper Bounds on the Secret-Key Rate for Quantum Key Distribution Protocols Using One-Way Classical Communication, Physical Review Letters 95, 080501 (2005).
  15. J. M. Renes and G. Smith, Noisy Processing and Distillation of Private Quantum States, Physical Review Letters 98, 020502 (2007).
  16. E. Woodhead, A. Acín, and S. Pironio, Device-independent quantum key distribution with asymmetric CHSH inequalities, Quantum 5, 443 (2021).
  17. I. Devetak and A. Winter, Distillation of secret key and entanglement from quantum states, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461, 207 (2005).
  18. M. Koashi, Simple security proof of quantum key distribution based on complementarity, New Journal of Physics 11, 045018 (2009).
  19. M. Masini, S. Pironio, and E. Woodhead, Simple and practical DIQKD security analysis via BB84-type uncertainty relations and Pauli correlation constraints, arXiv:2107.08894  (2021).
  20. X. Ma and N. Lütkenhaus, Improved Data Post-Processing in Quantum Key Distribution and Application to Loss Thresholds in Device Independent QKD, Quantum Information and Computation 12, 203 (2012).
  21. M. Tomamichel and E. Hänggi, The link between entropic uncertainty and nonlocality, Journal of Physics A: Mathematical and Theoretical 46, 055301 (2013).
  22. P. H. Eberhard, Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment, Physical Review A 47, R747 (1993).
  23. B. W. Reichardt, F. Unger, and U. Vazirani, Classical command of quantum systems, Nature 496, 456 (2013).
  24. A. Gheorghiu, E. Kashefi, and P. Wallden, Robustness and device independence of verifiable blind quantum computing, New Journal of Physics 17, 10.1088/1367-2630/17/8/083040 (2015).
  25. M. Hajdušek, C. A. Pérez-Delgado, and J. F. Fitzsimons, Device-independent verifiable blind quantum computation, arXiv:1502.02563 10.48550/arXiv.1502.02563 (2015).
  26. R. Arnon-Friedman, R. Renner, and T. Vidick, Simple and tight device-independent security proofs, SIAM Journal on Computing 48, 181 (2019).
  27. M. Tomamichel, R. Colbeck, and R. Renner, A Fully Quantum Asymptotic Equipartition Property, IEEE Transactions on Information Theory 55, 5840 (2009).
  28. P. J. Brown, S. Ragy, and R. Colbeck, A Framework for Quantum-Secure Device-Independent Randomness Expansion, IEEE Transactions on Information Theory 66, 2964 (2020).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube