Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multiscale physics of atomic nuclei from first principles (2404.00058v1)

Published 26 Mar 2024 in nucl-th and nucl-ex

Abstract: Atomic nuclei exhibit multiple energy scales ranging from hundreds of MeV in binding energies to fractions of an MeV for low-lying collective excitations. As the limits of nuclear binding is approached near the neutron- and proton driplines, traditional shell-structure starts to melt with an onset of deformation and an emergence of coexisting shapes. It is a long-standing challenge to describe this multiscale physics starting from nuclear forces with roots in quantum chromodynamics. Here we achieve this within a unified and non-perturbative framework that captures both short- and long-range correlations starting from modern nucleon-nucleon and three-nucleon forces from chiral effective field theory. The short-range correlations which accounts for the bulk of the binding energy is included within a symmetry-breaking framework, while long-range correlations (and fine details about the collective structure) are included via symmetry projection. Our calculations accurately reproduce available experimental data for low-lying collective states and the electromagnetic quadrupole transitions in ${20-30}$Ne. We also reveal coexisting spherical and deformed shapes in ${30}$Ne, which indicates the breakdown of the magic neutron number $N=20$ as the key nucleus ${28}$O is approached, and we predict that the dripline nuclei ${32,34}$Ne are strongly deformed. By developing reduced-order-models for symmetry-projected states, we perform a global sensitivity analysis and find that the subleading singlet S-wave contact and a pion-nucleon coupling strongly impact nuclear deformation in chiral effective-field-theory. The techniques developed in this work clarify how microscopic nuclear forces generate the multiscale physics of nuclei spanning collective phenomena as well as short-range correlations and allow to capture emergent and dynamical phenomena in finite fermion systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. P. Maris, M. A. Caprio, and J. P. Vary, Emergence of rotational bands in ab initio no-core configuration interaction calculations of the be isotopes, Phys. Rev. C 91, 014310 (2015).
  2. Nuclear Science Advisory Committee, 2007 Long Range Plan: The Frontiers of Nuclear Science (2007).
  3. F. Coester and H. Kümmel, Short-range correlations in nuclear wave functions, Nuclear Physics 17, 477 (1960).
  4. W. Dickhoff and C. Barbieri, Self-consistent green’s function method for nuclei and nuclear matter, Prog. Part. Nucl. Phys. 52, 377 (2004).
  5. V. Somà, C. Barbieri, and T. Duguet, Ab initio gorkov-green’s function calculations of open-shell nuclei, Phys. Rev. C 87, 011303 (2013).
  6. S. K. Bogner, R. J. Furnstahl, and R. J. Perry, Similarity renormalization group for nucleon-nucleon interactions, Phys. Rev. C 75, 061001 (2007).
  7. H. Kümmel, K. H. Lührmann, and J. G. Zabolitzky, Many-fermion theory in expS- (or coupled cluster) form, Phys. Rep. 36, 1 (1978).
  8. R. J. Bartlett and M. Musiał, Coupled-cluster theory in quantum chemistry, Rev. Mod. Phys. 79, 291 (2007).
  9. M. Baranger and K. Kumar, Nuclear deformations in the pairing-plus-quadrupole model: (ii). discussion of validity of the model, Nuclear Physics A 110, 490 (1968).
  10. K. Kumar and M. Baranger, Nuclear deformations in the pairing-plus-quadrupole model: (iii). static nuclear shapes in the rare-earth region, Nuclear Physics A 110, 529 (1968).
  11. P. Federman and S. Pittel, Unified shell-model description of nuclear deformation, Phys. Rev. C 20, 820 (1979).
  12. W. Nazarewicz, Microscopic origin of nuclear deformations, Nucl. Phys. A 574, 27 (1994).
  13. M. Dufour and A. P. Zuker, Realistic collective nuclear hamiltonian, Phys. Rev. C 54, 1641 (1996).
  14. A. Poves, Shape coexistence and islands of inversion monopole vs multipole, JPS Conference Proceedings 23, 012015 (2018).
  15. A. Bohr, The coupling of nuclear surface oscillations to the motion of individual nucleons, Dan. Mat. Fys. Medd. 26, no. 14 (1952).
  16. A. Bohr and B. R. Mottelson, Collective and individual-particle aspects of nuclear structure, Dan. Mat. Fys. Medd. 27, no. 16 (1953).
  17. S. G. Nilsson, Binding states of individual nucleons in strongly deformed nuclei, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 29, no.16 (1955).
  18. J. P. Elliott and J. D. Cockcroft, Collective motion in the nuclear shell model. i. classification schemes for states of mixed configurations, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 245, 128 (1958a).
  19. J. P. N. Elliott and J. D. Cockcroft, Collective motion in the nuclear shell model ii. the introduction of intrinsic wave-functions, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 245, 562 (1958b).
  20. A. P. Zuker and M. Dufour, Separation of the monopole contribution to the nuclear Hamiltonian, arXiv e-prints , nucl-th/9505012 (1995), arXiv:nucl-th/9505012 [nucl-th] .
  21. J. Duflo and A. P. Zuker, The nuclear monopole hamiltonian, Phys. Rev. C 59, R2347 (1999).
  22. E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Modern theory of nuclear forces, Rev. Mod. Phys. 81, 1773 (2009).
  23. R. Machleidt and D. Entem, Chiral effective field theory and nuclear forces, Phys. Rep. 503, 1 (2011).
  24. H. W. Hammer, S. König, and U. van Kolck, Nuclear effective field theory: status and perspectives, Rev. Mod. Phys. 92, 025004 (2020), arXiv:1906.12122 [nucl-th] .
  25. I. M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simul. 55, 271 (2001).
  26. A. Ekström and G. Hagen, Global sensitivity analysis of bulk properties of an atomic nucleus, Phys. Rev. Lett. 123, 252501 (2019).
  27. K. Heyde and J. L. Wood, Shape coexistence in atomic nuclei, Rev. Mod. Phys. 83, 1467 (2011).
  28. A. Gade and S. N. Liddick, Shape coexistence in neutron-rich nuclei, Journal of Physics G: Nuclear and Particle Physics 43, 024001 (2016).
  29. F. Nowacki, A. Obertelli, and A. Poves, The neutron-rich edge of the nuclear landscape: Experiment and theory., Progress in Particle and Nuclear Physics 120, 103866 (2021).
  30. P. Doornenbal, H. Scheit, N. Aoi, S. Takeuchi, K. Li, E. Takeshita, H. Wang, H. Baba, S. Deguchi, N. Fukuda, H. Geissel, R. Gernhäuser, J. Gibelin, I. Hachiuma, Y. Hara, C. Hinke, N. Inabe, K. Itahashi, S. Itoh, D. Kameda, S. Kanno, Y. Kawada, N. Kobayashi, Y. Kondo, R. Krücken, T. Kubo, T. Kuboki, K. Kusaka, M. Lantz, S. Michimasa, T. Motobayashi, T. Nakamura, T. Nakao, K. Namihira, S. Nishimura, T. Ohnishi, M. Ohtake, N. A. Orr, H. Otsu, K. Ozeki, Y. Satou, S. Shimoura, T. Sumikama, M. Takechi, H. Takeda, K. N. Tanaka, K. Tanaka, Y. Togano, M. Winkler, Y. Yanagisawa, K. Yoneda, A. Yoshida, K. Yoshida, and H. Sakurai, Spectroscopy of Ne32superscriptNe32{}^{32}\mathrm{Ne}start_FLOATSUPERSCRIPT 32 end_FLOATSUPERSCRIPT roman_Ne and the “island of inversion”, Phys. Rev. Lett. 103, 032501 (2009).
  31. R. Rodríguez-Guzmán, J. Egido, and L. Robledo, Correlations beyond the mean field in magnesium isotopes: angular momentum projection and configuration mixing, Nuclear Physics A 709, 201 (2002).
  32. S. Péru and M. Martini, Mean field based calculations with the gogny force: Some theoretical tools to explore the nuclear structure, The European Physical Journal A 50, 88 (2014).
  33. E. Caurier, F. Nowacki, and A. Poves, Merging of the islands of inversion at n=20𝑛20n=20italic_n = 20 and n=28𝑛28n=28italic_n = 28, Phys. Rev. C 90, 014302 (2014).
  34. G. Hagen, T. Papenbrock, and D. J. Dean, Solution of the center-of-mass problem in nuclear structure calculations, Phys. Rev. Lett. 103, 062503 (2009a).
  35. G. Hagen, G. R. Jansen, and T. Papenbrock, Structure of Ni78superscriptNi78{}^{78}\mathrm{Ni}start_FLOATSUPERSCRIPT 78 end_FLOATSUPERSCRIPT roman_Ni from first-principles computations, Phys. Rev. Lett. 117, 172501 (2016).
  36. D. R. Entem and R. Machleidt, Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory, Phys. Rev. C 68, 041001 (2003).
  37. I. Vernon, M. Goldstein, and R. G. Bower, Galaxy formation: a bayesian uncertainty analysis, Bayesian Anal. 5, 619 (2010).
  38. A. F. M. Smith and A. E. Gelfand, Bayesian statistics without tears: A sampling-resampling perspective, Am. Stat. 46, 84 (1992).
  39. W. Jiang and C. Forssén, Bayesian probability updates using sampling/importance resampling: Applications in nuclear theory, Front. in Phys. 10, 1058809 (2022), arXiv:2210.02507 [nucl-th] .
  40. J. Arponen, The method of stationary cluster amplitudes and the phase transition in the lipkin pseudospin model, Journal of Physics G: Nuclear Physics 8, L129 (1982).
  41. J. Arponen, Variational principles and linked-cluster exp S expansions for static and dynamic many-body problems, Ann. Phys. 151, 311 (1983).
  42. D. J. Thouless, Stability conditions and nuclear rotations in the Hartree-Fock theory, Nuclear Physics 21, 225 (1960).
  43. B. Bally and M. Bender, Projection on particle number and angular momentum: Example of triaxial bogoliubov quasiparticle states, Phys. Rev. C 103, 024315 (2021).
  44. J. Fujita and H. Miyazawa, Pion theory of three-body forces, Prog. Theor. Phys. 17, 360 (1957).
  45. D. L. Hill and J. A. Wheeler, Nuclear constitution and the interpretation of fission phenomena, Phys. Rev. 89, 1102 (1953).
  46. J. J. Griffin and J. A. Wheeler, Collective motions in nuclei by the method of generator coordinates, Phys. Rev. 108, 311 (1957).
  47. P.-O. Löwdin, Quantum theory of many-particle systems. ii. study of the ordinary hartree-fock approximation, Phys. Rev. 97, 1490 (1955).
  48. J. Rodriguez-Laguna, L. M. Robledo, and J. Dukelsky, Efficient computation of matrix elements of generic slater determinants, Phys. Rev. A 101, 012105 (2020).
  49. H. G. A. Burton, Generalized nonorthogonal matrix elements: Unifying wick’s theorem and the slater–condon rules, The Journal of Chemical Physics 154, 144109 (2021), https://doi.org/10.1063/5.0045442 .
  50. H. Hergert, A guided tour of ab initio nuclear many-body theory, Frontiers in Physics 8, 10.3389/fphy.2020.00379 (2020).
  51. Evaluated nuclear structure data file (ensdf) (2023).
  52. B. A. Brown and W. A. Richter, New “usd” hamiltonians for the sd shell, Physical Review C (Nuclear Physics) 74, 034315 (2006).
  53. M. G. Mayer and J. H. D. Jensen, Elementary Theory of Nuclear Shell Structure (John Wiley & Sons, New York, 1955).
  54. P. Doornenbal, H. Scheit, S. Takeuchi, N. Aoi, K. Li, M. Matsushita, D. Steppenbeck, H. Wang, H. Baba, E. Ideguchi, N. Kobayashi, Y. Kondo, J. Lee, S. Michimasa, T. Motobayashi, A. Poves, H. Sakurai, M. Takechi, Y. Togano, and K. Yoneda, Mapping the deformation in the “island of inversion”: Inelastic scattering of 3030{}^{30}start_FLOATSUPERSCRIPT 30 end_FLOATSUPERSCRIPTne and 3636{}^{36}start_FLOATSUPERSCRIPT 36 end_FLOATSUPERSCRIPTmg at intermediate energies, Phys. Rev. C 93, 044306 (2016).
  55. I. Svensson, A. Ekström, and C. Forssén, Inference of the low-energy constants in delta-full chiral effective field theory including a correlated truncation error, arXiv:2304.02004  (2023), arXiv:2304.02004 [nucl-th] .
  56. T. Otsuka, T. Matsuo, and D. Abe, Mean field with tensor force and shell structure of exotic nuclei, Phys. Rev. Lett. 97, 162501 (2006).
  57. A. Poves, Shape coexistence: the shell model view, Journal of Physics G: Nuclear and Particle Physics 43, 024010 (2016).
  58. Y. S. Lee, S. A. Kucharski, and R. J. Bartlett, A coupled cluster approach with triple excitations, J. Chem. Phys. 81, 5906 (1984).
  59. J. D. Watts and R. J. Bartlett, Economical triple excitation equation-of-motion coupled-cluster methods for excitation energies, Chem. Phys. Lett. 233, 81 (1995).
  60. I. Hamamoto, Neutron shell structure and deformation in neutron-drip-line nuclei, Phys. Rev. C 85, 064329 (2012).
  61. I. Hamamoto, Shell structure of one-particle resonances in deformed potentials, Phys. Rev. C 93, 054328 (2016).
Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com