Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Detecting Light Dark Matter with Kinetic Inductance Detectors (2403.19739v1)

Published 28 Mar 2024 in hep-ph, hep-ex, and physics.ins-det

Abstract: Superconducting detectors are a promising technology for probing dark matter at extremely low masses, where dark matter interactions are currently unconstrained. Realizing the potential of such detectors requires new readout technologies to achieve the lowest possible thresholds for deposited energy. Here we perform a prototype search for dark matter--electron interactions with kinetic inductance detectors (KIDs), a class of superconducting detector originally designed for infrared astronomy applications. We demonstrate that existing KIDs can achieve effective thresholds as low as 0.2 eV, and we use existing data to set new dark matter constraints. The relative maturity of the technology underlying KIDs means that this platform can be scaled significantly with existing tools, enabling powerful new searches in the coming years.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. Y. Hochberg, T. Lin, and K. M. Zurek, Absorption of light dark matter in semiconductors, Phys. Rev. D95, 023013 (2017a), arXiv:1608.01994 [hep-ph] .
  2. Y. Hochberg, Y. Zhao, and K. M. Zurek, Superconducting Detectors for Superlight Dark Matter, Phys. Rev. Lett. 116, 011301 (2016), arXiv:1504.07237 [hep-ph] .
  3. G. Cavoto, F. Luchetta, and A. D. Polosa, Sub-GeV Dark Matter Detection with Electron Recoils in Carbon Nanotubes, Phys. Lett. B 776, 338 (2018), arXiv:1706.02487 [hep-ph] .
  4. K. Schutz and K. M. Zurek, Detectability of Light Dark Matter with Superfluid Helium, Phys. Rev. Lett. 117, 121302 (2016), arXiv:1604.08206 [hep-ph] .
  5. S. Knapen, T. Lin, and K. M. Zurek, Light Dark Matter in Superfluid Helium: Detection with Multi-excitation Production, Phys. Rev. D95, 056019 (2017), arXiv:1611.06228 [hep-ph] .
  6. J. Zmuidzinas, Superconducting microresonators: Physics and applications, Annual Review of Condensed Matter Physics 3, 169 (2012).
  7. J. Gao et al., A titanium-nitride near-infrared kinetic inductance photon-counting detector and its anomalous electrodynamics, Appl. Phys. Lett. 101, 142602 (2012), arXiv:1208.0871 [cond-mat.supr-con] .
  8. J. Baselmans, Kinetic inductance detectors, Journal of Low Temperature Physics 167, 292 (2012).
  9. W. Guo et al., Counting Near Infrared Photons with Microwave Kinetic Inductance Detectors, Appl. Phys. Lett. 110, 212601 (2017), arXiv:1702.07993 [physics.ins-det] .
  10. B. A. Mazin et al., Optical and Near-IR Microwave Kinetic Inductance Detectors (MKIDs) in the 2020s,   (2019), arXiv:1908.02775 [astro-ph.IM] .
  11. A. Cruciani et al., BULLKID: Monolithic array of particle absorbers sensed by kinetic inductance detectors, Appl. Phys. Lett. 121, 213504 (2022), arXiv:2209.14806 [physics.ins-det] .
  12. L. Pagnanini et al., CALDER: Cryogenic Light Detector for rare event searches, PoS NEUTEL2015, 076 (2015), arXiv:1512.08901 [physics.ins-det] .
  13. K. O’Brien, Kidspec: An mkid-based medium-resolution, integral field spectrograph, Journal of Low Temperature Physics 199, 537 (2020).
  14. N. Fruitwala et al., Second Generation Readout For Large Format Photon Counting Microwave Kinetic Inductance Detectors, Rev. Sci. Instrum. 91, 124705 (2020), arXiv:2011.06685 [astro-ph.IM] .
  15. A. K. Sinclair et al. (CCAT-prime), CCAT-prime: RFSoC based readout for frequency multiplexed kinetic inductance detectors, Proc. SPIE Int. Soc. Opt. Eng. 12190, 444 (2022), arXiv:2208.07465 [astro-ph.IM] .
  16. J. Gao, The physics of superconducting microwave resonators (2008).
  17. L. Barak et al. (SENSEI), SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper-CCD, Phys. Rev. Lett. 125, 171802 (2020), arXiv:2004.11378 [astro-ph.CO] .
  18. D. W. Amaral et al. (SuperCDMS), Constraints on low-mass, relic dark matter candidates from a surface-operated SuperCDMS single-charge sensitive detector, Phys. Rev. D 102, 091101 (2020), arXiv:2005.14067 [hep-ex] .
  19. A. Aguilar-Arevalo et al. (DAMIC), Constraints on Light Dark Matter Particles Interacting with Electrons from DAMIC at SNOLAB, Phys. Rev. Lett. 123, 181802 (2019), arXiv:1907.12628 [astro-ph.CO] .
  20. R. Essig, T. Volansky, and T.-T. Yu, New Constraints and Prospects for sub-GeV Dark Matter Scattering off Electrons in Xenon, Phys. Rev. D 96, 043017 (2017), arXiv:1703.00910 [hep-ph] .
  21. P. Agnes et al. (DarkSide), Constraints on Sub-GeV Dark-Matter–Electron Scattering from the DarkSide-50 Experiment, Phys. Rev. Lett. 121, 111303 (2018), arXiv:1802.06998 [astro-ph.CO] .
  22. E. Aprile et al. (XENON), Light Dark Matter Search with Ionization Signals in XENON1T, Phys. Rev. Lett. 123, 251801 (2019), arXiv:1907.11485 [hep-ex] .
  23. R. Agnese et al. (SuperCDMS), First Dark Matter Constraints from a SuperCDMS Single-Charge Sensitive Detector, Phys. Rev. Lett. 121, 051301 (2018), [Erratum: Phys.Rev.Lett. 122, 069901 (2019)], arXiv:1804.10697 [hep-ex] .
  24. Q. Arnaud et al. (EDELWEISS), First germanium-based constraints on sub-MeV Dark Matter with the EDELWEISS experiment, Phys. Rev. Lett. 125, 141301 (2020), arXiv:2003.01046 [astro-ph.GA] .
  25. A. Andrianavalomahefa et al. (FUNK Experiment), Limits from the Funk Experiment on the Mixing Strength of Hidden-Photon Dark Matter in the Visible and Near-Ultraviolet Wavelength Range, Phys. Rev. D 102, 042001 (2020), arXiv:2003.13144 [astro-ph.CO] .
  26. H. An, M. Pospelov, and J. Pradler, Dark Matter Detectors as Dark Photon Helioscopes, Phys. Rev. Lett. 111, 041302 (2013), arXiv:1304.3461 [hep-ph] .
  27. S. R. Golwala, Exclusion limits on the WIMP nucleon elastic scattering cross-section from the Cryogenic Dark Matter Search, Ph.D. thesis, UC, Berkeley (2000).
  28. S. Knapen, J. Kozaczuk, and T. Lin, Dark matter-electron scattering in dielectrics, Phys. Rev. D 104, 015031 (2021), arXiv:2101.08275 [hep-ph] .
  29. W. DeRocco, M. Galanis, and R. Lasenby, Dark matter scattering in astrophysical media: collective effects, JCAP 05 (05), 015, arXiv:2201.05167 [hep-ph] .
  30. G. J. Feldman and R. D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57, 3873 (1998), arXiv:physics/9711021 .
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 4 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube